

APPENDIX 3-4

INFRASTRUCTURE DESIGN REPORT

Knocknacarra District Centre, Rahoon, Galway

Report Title

Infrastructure Design Report

Clien

Glenveagh Living Limited

JCTUR

NFRASTRI

OCTOBER 2019

Job Title:	Knocknacarra District Centre, Rahoon, Galway.
Job Number:	180191
Report Title:	Infrastructure Design Report
Report Reference:	180191-Rep-001
Author:	Fernando Szeliga
Approved by:	Dan Reilly
Date:	October 2019
Distribution:	Planning Client Architect Planning Consultant File

DBFL Consulting Engineers Ormond House Upper Ormond Quay Dublin 7

 Tel
 01 4004000

 Fax
 01 4004050

 Email
 info@dbfl.ie

 Web
 http://www.dbfl.ie

Revision	Issue Date	Description	Prepared	Reviewed	Approved
-	17/04/2019	Draft	FNS	NCG	DJR
-	13/05/2019	Stage 2 SHD	FNS	NCG	DJR
A	24/10/2019	Stage 3 SHD	FNS	NCG	DJR

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1	Background1
1.2	Location & Topography1
1.3	Proposals2
1.4	Existing ground conditions2
1.5	Flood Risk
1.6	Site Access and Road Layout3
2.0	EXISTING SERVICES
2.1	General4
2.2	Foul Sewer4
2.3	Surface Water Drainage5
2.4	Water Supply6
3.0	PROPOSED SURFACE WATER DRAINAGE7
3.1	Surface Water Policy7
3.2	Surface Water Strategy7
3.3	SUDs
3.4	Attenuation9
3.5	Interception11
3.6	Design Standards
3.7	Climate Change12
3.8	Flooding Provision
3.9	Surface Water Quality Impact12
4.0	PROPOSED FOUL DRAINAGE14
4.1	Proposed Foul Layout14
4.2	Design Calculations14
5.0	WATER SUPPLY AND DISTRIBUTION16
5.1	Proposed Water main and Supply16
5.2	Water main Standards and Details16
5.3	Hydrants16
5.4	Design Calculations

APPENDICES

Appendix A .	GII SITE INVESTIGATION REPORT
--------------	-------------------------------

- Appendix B . PERMISSIBLE OUTFLOW CALCULATIONS
- Appendix C . ATTENUATION CALCULATIONS
- Appendix D. SURFACE WATER SEWER CALCULATIONS
- Appendix E . FOUL WATER SEWER CALCULATIONS
- Appendix F . IRISH WATER STATEMENT OF DESIGN ACCEPTANCE
- Appendix G . IRISH WATER PRE CONNECTION FEEDBACK FORM

1.0 INTRODUCTION

1.1 Background

DBFL have been instructed to prepare an Infrastructure Design Report to accompany a planning application for the proposed mixed use development at Knocknacarra District Centre, Rahoon, Galway.

The proposed development comprises 332 residential units extending to a maximum of 7 floors with 2667 m² of commercial space including a 174 m² creche at ground floor level, together with associated car and bicycle parking facilities. The site will be dissected into Site 1 and Site 2 by the proposed diversion of the existing access road to the Gateway Retail Park, refer to Figure 1.1 below.

1.2 Location & Topography

The subject site is located to the North of the Western Distributor Road and is bounded to the west by the existing Gateway Retail Park, which is approximately 2.6 Km from Galway City Centre. The site's southern boundary immediately bounds an Aldi supermarket. The primary school Gaelscoil Mhic Amhlaigh is to the north and residential developments are to the east. The site is approximately 2.43 Ha and is currently greenfield, however a construction compound is located in the southern end.

The site is within the Specific Local Objective Area of 'Enterprise, Light Industry and Commercial' in the Galway City Council Development Plan 2017-2023.

— Site Boundary

Figure 1.1 - Site Location (Site Boundary Indicative Only).

The topography of the site is generally flat with a 2m fall from the north western corner to the south eastern corner in the northern half of the site, and a 2m fall from the eastern boundary to the western boundary in the southern half of the site as shown in Figure 1.2.

Figure 1.2 – Site Topography.

1.3 Proposals

The proposed development consists of the construction of 332 residential units up to 7 storeys with 2667 m² of commercial space including a 174 m² creche at ground floor level. The site will be dissected into Site 1 and Site 2 by the proposed diversion of the existing access road to the Gateway Retail Park, refer to Figure 1.2 below. A partially underpodium car parking facility will be constructed in Site 2 at ground floor level supplying 85 car parking spaces. A landscaped courtyard podium and a portion of the first floor will be constructed above the car park.

The proposals include the provision of a total of 291 surface cycle stand spaces located at ground level and 386 enclosed bicycle parking stands located at ground level.

1.4 Existing ground conditions

A site investigation was undertaken by Ground Investigations Ireland in October 2018 to ascertain the existing ground conditions on the subject site. The ground conditions generally consist of made ground to 0.4 - 1.7m deep from ground level over peat which ranged in thickness from 0.1m to 1.8m. Beneath the peat, granular deposits were encountered in some areas which were settled over sand in two locations. Soft cohesive

deposits were encountered at one location (TP05) between 2.8m and 3.8m below ground level. Presumed bedrock was encountered at an elevation of 28.46mOD in the northern section of the site to 25.78mOD in the southern section of the site.

Groundwater was encountered at a fast inflow in TP-01 1.3m BGL and seepages were noted in TP-04 (2.3m), TP-05 (2.3) and TP10 (1m).

A copy of the ground investigation report is provided in Appendix A.

1.5 Flood Risk

A separate Site Specific Flood Risk Assessment has been prepared as part of the application. Refer to DBFL report number 180191-REP-002.

1.6 Site Access and Road Layout

A separate report has been prepared by Atkins Global on Roads, Traffic and Transportation as part of the application.

2.0 EXISTING SERVICES

2.1 General

An existing drainage and watermain network provide service to the developments bounding the subject site. The sections below describe these existing services based on drainage and watermain records obtained from Galway City Council/Irish Water for the subject site.

2.2 Foul Sewer

A 225 mm diameter foul sewer runs to the west of Site 2 and crosses the subject site along the existing retail park access road before it discharges into a 300mm diameter foul sewer. This 300mm diameter foul sewer is located in the "Gort Ná Bró" road to the east of the site and flows towards the Western Distributor Road. In addition, a 225mm diameter foul sewer runs to the west of Site 1 and appears to enter the south-western corner of the site and run beneath the Aldi Supermarket. It is likely that the foul sewer was diverted as part of the Aldi Supermarket construction and it is not as shown on the records. See Figure 4.1 below for extract from Irish Water record map.

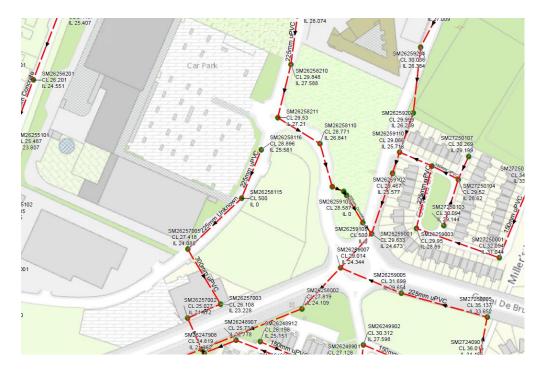


Figure 4.1 – Extract of Irish Water Foul Sewer Records.

2.3 Surface Water Drainage

A 375 mm diameter surface water sewer runs to the west of Site 2 and crosses the subject site along the existing retail park access road before it discharges into a 1500 mm diameter surface water sewer. This 1500mm diameter sewer is located in the "Gort Ná Bró" road to the east of the site and flows towards the Western Distributor Road. In addition, a 450mm diameter surface sewer runs to the west of Site 1 and appears to enter the south-western corner of the site running beneath the Aldi Supermarket. Similar to the foul sewer, it is likely that the surface water sewer was diverted as part of the Aldi Supermarket construction and is not as shown on the records. See Figure 4.2 below for extract from Irish Water record map.



Figure 4.2 – Extract of Irish Water Surface Sewer Records.

2.4 Water Supply

There are 150 mm diameter watermains located on both the east and the west of the site. A 150 mm diameter watermain runs to the west of Site 2 and connects with the 150mm diameter watermain in the Western Distributor Road by extending through the existing access road to the Gateway Retail Park. The watermain to the east of the subject site serves the adjacent residential developments. A watermain of unknown diameter runs along the west of Site 1 and provides service to the Gateway Retail Park. See Figure 4.2 below for extract from Irish Water record map.

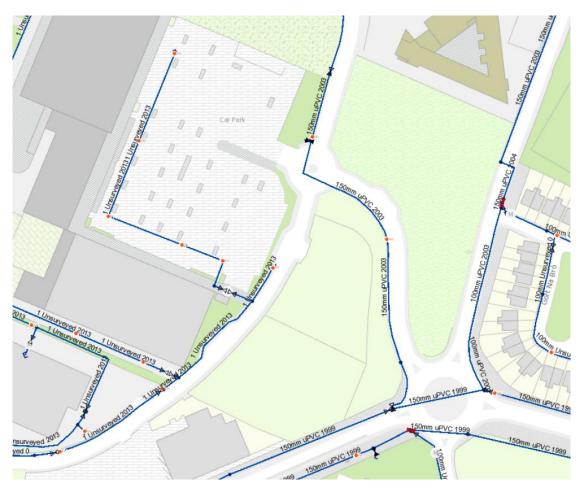


Figure 4.3 – Extract of Irish Water main Records.

3.0 PROPOSED SURFACE WATER DRAINAGE

3.1 Surface Water Policy

The management of surface water for the proposed development has been designed to comply with the policies and guidelines outlined in the Greater Dublin Strategic Drainage Study (GDSDS) and with the requirements of Galway City Council. The guidelines require the following 4 main criteria to be provided by the design;

- Criterion 1: River Water Quality Protection satisfied by providing interception storage and treatment within the green podium in Site 2, and the porous asphalt within the civic plaza in Site 1.
- Criterion 2: River Regime Protection satisfied by attenuating to greenfield run-off rates.
- Criterion 3: Level of Service (flooding) for the site satisfied by the development's surface water drainage design, planned flood routing, run-off contained within site, flood storage and building set greater than 0.5m above 100-year flood level.
- Criterion 4: River flood protection attenuation volume and discharge limit designed to greenfield run-off rates (long term storage not provided).

3.2 Surface Water Strategy

To meet the requirements of the surface water policy above the surface water strategy has been described in this section to give a clearer indication of how the design development has progressed to the submitted design.

It is proposed to divert the existing surface water sewers within the site to align the drainage layout with the proposed diversion of the existing access road to the Gateway Retail Park as represented on drawing 180191-3000. Both Site 1 and Site 2 of the proposed development will be provided with a surface water drainage network to collect surface water flows from the apartment blocks and commercial units. The Site 2 storm drainage will be constructed in the ground floor car park and attenuated outflows will connect with the existing 375mm diameter sewer to the north-west of the site. The Site 1 storm drainage will discharge attenuated outflows to the existing 450mm diameter sewer to the south-west of the site.

The surface water strategy incorporates attenuation of storm water to limit discharge from the site, although storage facilities and SUDs elements will be designed to allow infiltration or reduction of run-off volumes and rates where possible.

A graphical form of the catchment areas can be found on DBFL drawing 180191-3001.

Run-off from roofs and any additional run-off from the landscaped courtyard podium slab is designed to be conveyed to the surface water drainage network at ground floor level. Two underground surface water attenuation tanks will be provided for the development to attenuate surface water flows for the 100 year critical storm + 10% allowance for climate change in accordance with GDSDS. A concrete attenuation tank will be located beneath the ground floor car park in Site 2, a concrete tank is proposed due to the presence of structural columns in the vicinity of the tank. A Stormtech attenuation system will be located beneath the civic plaza in Site 1.

The podium (landscaped courtyard) consists mainly of green areas, soft landscaped areas and raised planters providing interception storage and treatment. The hard-standing area of the podium, which forms a north-south pedestrian link will consist of paving. A number of gullies at podium slab level will drain any residual runoff from the landscaped courtyard to the surface water network at ground level.

DBFL Consulting Engineers met with Galway City Council Drainage Department on the 30th of November 2018 to discuss the drainage strategy. The drainage strategy was agreed in principle.

The drainage network and attenuation in Site 1 have been sized to include the future district centre use site to the south.

3.3 SUDs

In accordance with the GDSDS it is proposed to provide sustainable urban drainage systems (SUDS) for managing storm-water from the facility. The aim of the SUDS strategy for the site will be to;

- Attenuate storm-water runoff.
- Reduce storm-water runoff.
- Reduce pollution impact.
- Replicate the natural characteristics of rainfall runoff for the site.

An assessment of the potential SUDS that could be incorporated within the site was conducted using the SUDS Manual, CIRIA 753. The SUDS elements which were found applicable to the proposed scheme design and layout include the following;

1. Porous asphalt paving on part of civic plaza within Site 1 to provide treatment, storage and reduce run-off rates.

- 3. Green podium with landscaped areas and raised planters to reduce run-off rates and total impermeable area.
- 4. Two attenuation storage systems for the attenuation of storm water up to the 100 year storm event + 10% allowance for climate change.
- 5. A Class 1 Bypass Separators to be provided on the outfall from each network.

The incorporation of the above SUDS elements will provide a sustainable manner in which to disperse surface water from the site and provide treatment of run-off and subsequent improvement of discharge quality.

3.4 Attenuation

Surface water run-off from the overall development will be attenuated to greenfield runoff rates (QBAR). This is calculated as 13.00 l/s using the Institute of Hydrology equation as recommended in the Greater Strategic Drainage Study (GDSDS) based on an area of 1.93 Ha which includes the future district centre use site to the south and excludes the road realignment.

Both Site 1 and Site 2 catchments will have independent attenuation systems and will be attenuated to 9.56 l/s and 3.44 l/s respectively as per QBAR calculations included in Appendix B.

The drainage design uses SOIL type 3 to calculate the site's QBAR greenfield run-off rate. To derive the soil type, table 4.5 of the Flood Studies Report was used as recommended by the GDSDS. The following is a summary of the site characteristics used in the selection of the pre-development soil value.

Drainage Group	2 - Commonly waterlogged within 60cm
Depth to impermeable layer	2 – 80-40cm
Permeability group (above 'impermeable' layers or to 80cm)	3 - Slow
Slope	1 – 0 -2°

Table 5.1 - Summary of Site Characteristics

October 2019

Drainage	Depth		-		S	lope class	es				
Group	to impermeable layer (cm)		0 - 2*			2 - 8°			×8°		
151.04	iayer (cin)		Permeability rates above impermeable layers								
		(1) Rapid	(2) Medium	Slow (3)	(1) Rapid	(2) Medium	Slow (3)	(1) Rapid	(2) Medium	Slow (3)	
1	>80		1		1			1	2	3	
	40.80		F		54) - S	2		3	1000	4	
	<40					20 <u>10</u> 		$\leq \frac{0 - \gamma_{p-1}}{\gamma_{p-1}} + \frac{1}{\gamma_{p-1}}$	<u></u>	- <u>1-1-1</u> 1	
-	>80	2	人。""古锦路 马马马马马马	(2	1.1.1.1	A.				
(2)	40 - 80	~	191 191		2		4	ă.			
\sim	<40	3	200 B.C.								
	>80					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	il an				
3	40 - 80					5				영문	
	<40				1.20	Sec. 18	e de las	44.54			

Figure 5.1 – Extract of Table 4.5 for classification of SOIL type for the development

Calculations can be found in Appendix B. Run-off from the new development and pavement is attenuated to a maximum discharge rate of QBAR in accordance with the requirements of the GDSDS, using a hydro-brake as a flow control device.

The impermeable areas contributing to the attenuation volume have had the following reduction factors applied:

- <u>Flat impermeable roof and impermeable paved areas</u>, a 5% reduction of the surface area is applied to take account of run-off not collected and stored within the micro and macro texture of the surfacing. Various sources recommend different reduction coefficients e.g. IS EN752 recommends Runoff Coefficient (C for the Rational Method) of 0.9 to 1.0 for impermeable areas and steeply sloping roofs. For flat roofs it recommends 0.5 to 1.0 depending on area).
- Landscaped podium, consists mainly of green areas, soft landscaped areas and raised planters. Planters will have an intensive build-up to facilitate planting and soft landscaping for larger shrubs and small trees. Green soft landscaped podium areas will have typical soil depths of up to 300mm to facilitate grassed areas, plants, shrubs and trees i.e. similar to a deep intensive green roof build up (refer to SUDS Manual & German FLL Guidelines for Green Roofs). The podium will also include some paved areas, and for this reason a reduction factor of 25% has been applied for runoff calculations.

Porous asphalt in the civic plaza will be laid over an un-compacted granular material that will reduce the flow rate from these areas and allow infiltration to the existing sub-grade. Rainfall will percolate through the porous asphalt and the stone bed beneath which will provide attenuation of surface water and allow infiltration to the sub-grade. Surface water will only overflow to the main surface water sewer in intense storms. A reduction of 50% has been applied for these reasons which takes into account the depth of stone and infiltration to the sub-grade.

A concrete tank storage system and a Stormtech attenuation system will be installed in Site 2 and Site 1 respectively to provide the required attenuation for the 100-year storm event. A concrete attenuation tank is proposed for Site 2 due to the presence of structural columns in the vicinity of the tank. Calculations indicate that approximately 172m³ and 361m³ of storage volume for the 100 year event (+10% climate change) is required for Site 1 and Site 2 respectively.

Surface water attenuation calculations can be found in Appendix C.

3.5 Interception

To prevent pollutants or sediments discharging into water courses the GDSDS requires "interception storage" to be incorporated into the development. This interception storage is designed to receive the run-off for rainfall depths of 5mm up to 10mm if possible. The SUDS features including porous asphalt and landscaped podium will provide the necessary interception volume required by the GDSDS.

3.6 Design Standards

Storm-water drainage has been designed in accordance with the Greater Dublin Code of Practice for Drainage Works. The following design parameters are applicable to the design:

- All impermeable access roads, hard-standing, parking and footpaths assumed to be 95% impermeable if draining to gullies.
- For the landscaped podium a reduction factor of 25% has been applied due to the interception and evapotranspiration properties of the green areas.
- Porous asphalt reduction of 50% has been applied for the decrease of flow rate and infiltration to the existing sub-grade that will occur due to the permeable build-up beneath the asphalt.

•	Time of entry:	4 minu	tes
•	Pipe Friction (Ks):	0.6 mn	ı
•	Minimum Velocity:	1.0 m/s	3
•	Standard Average Annual Rainfall:	1247m	m
•	M5-60:	16.00n	nm
•	Ratio r (M5-60/M5-2D):	0.261	
•	Attenuation Tank Storm Return Eve	nt	GDSDS Volume 2, p61, Criterion 3
			30 year no flooding on site.
			100 year check no internal property
			flooding. Flood routing plan. FFL
			freeboard above 100-year flood level.
			No flooding to adjacent areas.

Climate Change 10% for rainfall intensities, as GDSDS

Surface water sewers have been designed in accordance with IS EN 752 and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

The minimum pipe diameter for surface water sewers is 150mm.

Surface water sewer calculations are provided in Appendix D.

3.7 **Climate Change**

Surface water calculations for the development made use of rainfall values for the Galway area as provided by Met Eireann. Rainfall intensities were increased by a factor of 10% to take account of climate change, as required by the GDSDS for attenuation storage design.

3.8 **Flooding Provision**

The surface water network, attenuation storage and site levels are designed to accommodate a 100-year storm event and includes climate change provision, refer to Microdrainage calculations in Appendix C. For storms greater than the design storm of 100-year design event + climate change provision has been discussed in the Site Specific Flood Risk Assessment, DBFL Report 180191-Rep-002.

Surface Water Quality Impact 3.9

The type of development is low risk i.e. it does not present a high risk of run-off contamination. The development's design and layout further reduce the risk of contaminants entering the surface water network as part of the parking area will be

covered with a green podium. Soft and hard landscaped areas within the podium will drain via the soil and stone build up to a concrete attenuation tank.

The use of porous asphalt within the civic plaza enhances the infiltration of the surface water runoff to a draining subgrade material that will act as a filter enhancing water quality before infiltrating slowly to the existing subgrade. A Class 1 Bypass Separator is proposed on the outfall from each surface water network to remove silts and treat hydrocarbons.

All undercover car park incidental drainage is discharged separately via a Class 2 separator to the foul sewer. In this way it is considered that the development provides treatment of collected run-off, provides a SUDS treatment train approach and is low risk of pollutants.

The proposed surface water system has therefore been designed to incorporate SuDS techniques which naturally reduce pollutants and improve water quality.

4.0 PROPOSED FOUL DRAINAGE

4.1 Proposed Foul Layout

The proposed foul drainage layout for the development will be similar to the surface water drainage. It is proposed to divert the existing foul water sewers within the site to align the drainage layout with the proposed diversion of the existing access road to the Gateway Retail Park as shown on drawing 180191-3000. Both Site 1 and Site 2 of the proposed development will be provided with a foul drainage network to collect foul flows from the apartment blocks and commercial units. The Site 2 foul drainage will be constructed in the ground floor car park and will connect with the existing 225mm diameter sewer to the north-west of the site. The Site 1 foul drainage will discharge to the existing 225mm sewer to the south-west of the site. Foul sewer calculations are provided in Appendix E.

Car parking incidental drainage at ground floor level beneath the podium slab level, will gravitate to the lowest point before passing through an interceptor, where this will discharge to the foul network as required by GDSDS.

The proposed foul sewer design and layout is in accordance with the Irish Water Code of Practice for Wastewater Infrastructure and The Irish Water Infrastructure Standard Details. DBFL have received a Statement of Design Acceptance from Irish Water which is included in Appendix F.

An Irish Water Feedback form has been received outlining that a water connection can be facilitated for the proposed development. The feedback letter is provided in Appendix G.

DBFL have consulted with Irish Water's Diversions Department to agree the diversion agreement for the existing foul sewer.

4.2 Design Calculations

All new main foul sewers are designed to discharge by gravity. Minimum gradients and pipe diameters for collector and main sewers are designed in accordance with the Building Regulations and Irish Water's Code of Practice for wastewater infrastructure and Standard Details for wastewater infrastructure. The sewer network is designed in accordance with the principles and methods set out in IS EN 752 (2008), IS EN12056: Part 2. Design criteria are as follows:

Pipe Roughness Coefficient	1.5 mm
Minimum Velocity	0.75 m/s (self-cleansing)
Maximum Velocity	2.50 m/s

Estimated peak foul loading generated by the proposed development is provided in Table 6.1:

	PREDICTED DEVELOPMENT FOUL FLOWS								
Use Type	No. of Units / AreaOccupancy RatePopulation (P)Loading (G) (I/day/person)Daily Loading (P)		Daily Loading (I/s))						
Residential	332 units	2.7 people/ dwelling	897	150	134,550	1.56			
Commercial	2,667m ²	1 person / 18m ²	148	50	7,400	0.09			
	Residential Loading (I/s)								
					Growth Factor	1			
			Infiltrat	ion @ 10% (as Co	op App C 1.2.4)	0.165			
Dry Weather Flow I/s									
Residential Peaking factor (as CoP App C 1.2.5)									
Residential Design Foul Flow (I/s)									
*Flow rates calcu	lated using	IW CoP for Wa	astewater Infra	structure					

Table 6.1: Estimated Foul Loading

4.3 Wastewater Connection Timelines and Phasing

It is anticipated that a wastewater connection will be required for Phase 01 (Block E & F) in Q1 2021 and a connection will be required for Phase 02 (Block A, B, C & D) in Q2 2021.

5.0 WATER SUPPLY AND DISTRIBUTION

5.1 Proposed Water main and Supply

As part of the proposed development it is proposed to divert the existing watermains within the site, and utilise the existing 150mm diameter watermain to the north-west of the site to supply the development. The proposed watermain layout will connect to the existing 150mm watermain located in the 'Gort Ná Bró' road to the east of the site. The residential blocks will be supplied from two centralised water plantrooms located in blocks A and F, while the commercial units will have individual connections. Hydrants will be located on the proposed network, refer to DBFL drawing 180191-3005.

The proposed watermain design and layout is in accordance with the Irish Water Code of Practice for Water Infrastructure and the Irish Water Infrastructure Standard Details. DBFL have received a Statement of Design Acceptance from Irish Water which is included in Appendix F.

An Irish Water Feedback form has been received outlining that a water connection can be facilitated for the proposed development. The feedback letter is provided in Appendix G.

DBFL have consulted with Irish Water's Diversions Department to agree the diversion agreement for the existing watermain.

5.2 Water main Standards and Details

The internal water main layout for the development has been designed in accordance with building regulations and where possible in accordance with Irish Water's Code of Practice and Standard Details for water infrastructure. Public watermains have been designed in accordance with Irish Water's Code of Practice and Standard Details for water infrastructure.

5.3 Hydrants

Hydrants shall comply with the requirements of BS 750:2012 and shall be installed in accordance with Irish Water's Code of Practice and Standard Details.

5.4 Design Calculations

The water demand is designed in accordance with the principles and methods set out in Irish Water's Code of Practice for Water Infrastructure Connections and Developer Services Design & Construction Requirements for Self-Lay Developments December 2017, section 3.7.2, as outlined below:

Per-capita consumption domestic	150l/person/day
Per-capita consumption commercial	50l/person/day

Average day/week demand factor	1.25
Peak demand factor	5.0

Estimated water demand for the proposed development is provided in Table 7.1:

	WATER DEMAND										
Use Type	No. of units / Area	Occupancy Rate	Population (P)	Average daily domestic demand (I/day)	Average daily domestic demand (I/s)	Average day/peak week demand (I/s)	Peak hour water demand (I/s)				
Residential	332 units	2.7 per dwelling	897	134,460	1.56	1.95	9.75				
Commercial	2,667m ²	1 person / 18m²	148	7,400	0.09	0.113	0.563				
	Peak hour water demand (I/s)										

Table 7.1 Estimated water demand

5.5 Water Connection Timelines and Phasing

It is anticipated that a water connection will be required for Phase 01 (Block E & F) in Q1 2021 and a connection will be required for Phase 02 (Block A, B, C & D) in Q2 2021.

Appendix A

GII SITE INVESTIGATION REPORT

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

Gateway, Phase 3

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	Gateway Phase 3
Engineer	DBFL
Project No	8165-10-18
Document Title	Gateway Phase 3, Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Final	C Finnerty	F McNamara	F McNamara	Dublin	20 November 2018

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

CONTENTS

1.0	Preamble	3
2.0	Overview	}
2.1.	Background	}
2.2.	Purpose and Scope	}
3.0	Subsurface Exploration	}
3.1.	General	}
3.2.	Trial Pits	}
3.3.	Soakaway Testing4	ł
3.4.	Surveying4	ł
3.5.	Laboratory Testing4	ł
4.0	Ground Conditions4	ł
4.1.	General4	ł
4.2.	Groundwater	5
4.3.	Laboratory Testing5	5
5.0	Recommendations & Conclusions6	5
5.1.	General6	;
5.2.	Foundations6	;
5.3.	Excavations6	5
5.4.	Soakaway Design7	,

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Laboratory Testing
Appendix 4	Infiltration Test Results

1.0 Preamble

On the instructions of DBFL Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., in October 2017 at the site of the proposed shopping centre extension in Knocknacarra, Galway.

2.0 Overview

2.1. Background

It is proposed to construct a new commercial retails space adjacent to the exiting Gateway Shopping Centre. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Carry out 14 No. Trial Pits to a maximum depth of 3.8m BGL
- Carry out 2 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Geotechnical Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and in-situ testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 13T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Surveying

The exploratory hole locations have been recorded using a Trimble R10 GNSS System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.5. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design. The results of the environmental sampling are discussed in a separate Environmental Report for the site.

Geotechnical testing consisting of moisture content, Atterberg limits and Particle Size Distribution (PSD), hydrometer were carried out in NMTL's Geotechnical Laboratory in Carlow. These data were not available eat the time of writing this report.

Soluble sulphate and pH analysis were carried out by Jones Environmental Laboratory on the UK, The results of the laboratory testing are included in Appendix 4 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site and are generally comprised;

- Made Ground
- Peat
- Soft Cohesive Deposits
- Granular Deposits (Possible Weathered Bedrock)
- Presumed Bedrock

MADE GROUND: Made Ground deposits were encountered from ground level and was present to a minimum of 0.4m to a maximum depth of 1.7m BGL. These deposits were described as either Dark brown or grey slightly sandy slightly gravelly slightly clayey Peat with occasional cobbles and boulders of granite and rare plastic and wood fragments. The source of the made ground or the time period in which it was imported is not known.

PEAT: The fill material was underlain by PEAT which ranged in thickness from 0.1m to 1.8m. The peat is described as being very soft dark brown slightly sandy slightly gravelly clayey PEAT in some instances the peat has frequent angular to sub-angular cobbles of granite and occasional boulders and lenses of grey sandy sub-angular to sub-rounded fine to coarse gravel.

GRANULAR DEPOSITS: Where present beneath the peat the granular deposits encountered interbedded are described as *Grey very sandy sub-angular to sub-rounded fine to coarse GRAVEL and COBBLES of granite with rare granite boulders.* The material may be very heavily weathered bedrock. Sand was encountered at two locations beneath the granular materials.

SOFT COHESIVE DEPOSITS: Soft cohesive deposits described as *soft to firm grey slightly sandy silty CLAY* were encountered at one location (TP05) between 2.8m and 3.8m BGL.

PRESUMED ROCK: Presumed bedrock was encountered at an elevation of 28.46mOD in the northern section of the site to 25.78mOD in the southern section of the site.

4.2. Groundwater

Groundwater was encountered in a number of trial pits. A fast inflow of water was noted in IT-01 at 1.3m BGL. Seepages were noted in TP-04 (2.3), TP-05 (2.3m) and TP-10 (1m).

4.3. Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

The results from the completed laboratory testing is included in Appendix 4 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 100 kN/m² is recommended for conventional strip or pad foundations on the granular deposits encountered below the peat/soft cohesive deposits typically present at a depth of 0.7m to 2.2m BGL where encountered. This presumed weathered rock stratum should be capable of providing a higher allowable bearing capacity subject to verification of the underlying intact bedrock by rotary coring or the density of the granular deposits confirmed with dynamic probing. At the locations of TP5, TP6, TP9 and TP10 this presumed weathered bedrock stratum was not encountered and the depth to competent foundation stratum should be proven with further investigation. The presence of soft cohesive deposits at 2.8m to 3.8m BGL in TP05 should be further investigated due to the elevation of this stratum compared to the depth of the possible weathered rock deposits in adjacent trial pits.

In any part of the site, should part of the foundation be on both on rock and granular/cohesive deposits we would recommend that all the foundations of the unit in question be lowered to the competent deeper stratum to avoid differential settlement.

The possibility for variation in the depth of the granular deposits in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

The pH and sulphate testing completed on samples recovered from the trial pits indicates that the average pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. The lowest pH recorded was 4.58 and the highest 8.33. The low levels of pH within the groundwater should be further investigated in terms of the impact on concrete foundations.

5.3. Excavations

Excavations in the Made Ground, Peat or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

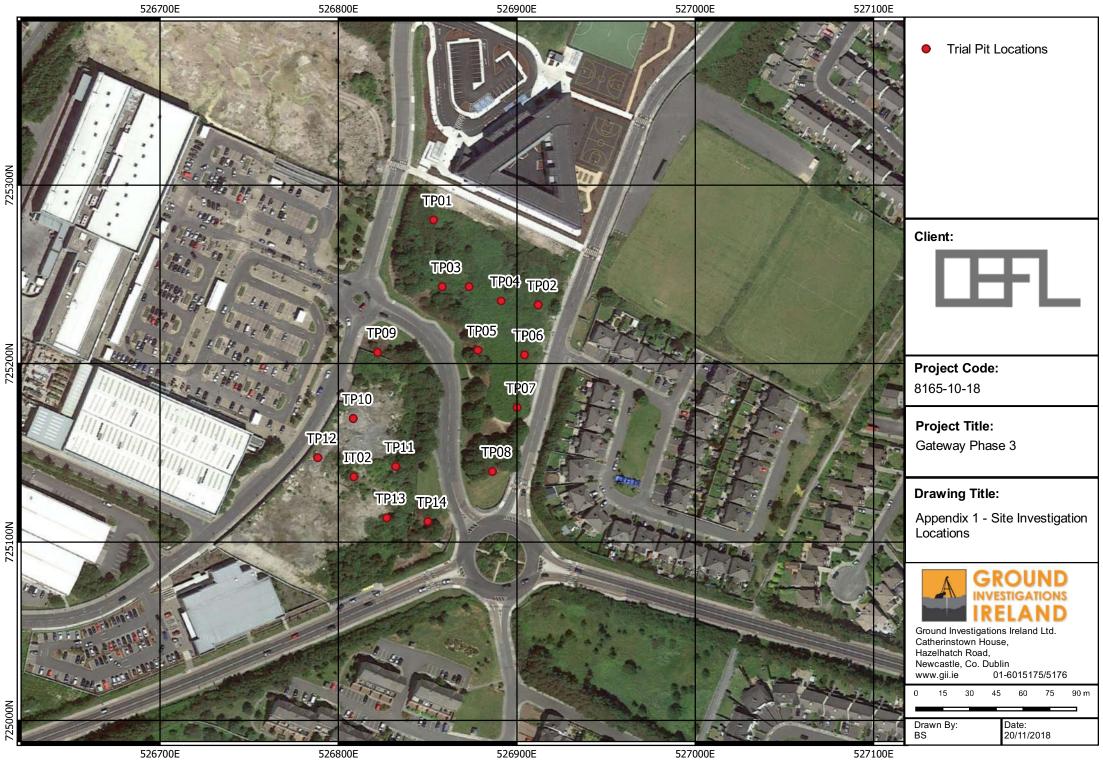
Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and are likely to require dewatering due to the groundwater seepages noted in the exploratory hole logs in the Appendices of this Report.

The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations. Generally, where significant excavations are required

in water bearing granular deposits a cut-off wall may be more cost effective than extensive dewatering. An assessment by a specialist dewatering contractor is recommended to determine the most cost effective approach to the proposed excavation.

Excavations in the upper cohesive and granular/weathered rock deposits are expected to be excavatable with conventional excavation equipment, with zones of more intact bedrock below this depth requiring rock breaking techniques. The 13T excavator was generally able to excavate to elevations of 28.46m (highest) to 25.7m OD (lowest) in TP1 and TP11 respectively below which excavation became difficult within the confines of the trial pit on encountering the more competent stratum below this level.

Any material to be removed off site should be disposed of to a suitably licenced landfill.


The environmental testing completed during the ground investigation is reported under the cover of a separate report GII Environmental Report.

5.4. Soakaway Design

An infiltration rate of $f=5.05 \times 10^{-5}$ m/s was calculated for the soakaway location IT-02. At the location of IT-01 shallow groundwater was encountered therefore not allow the calculation of 'f' the soil infiltration rate. The location of IT-01 is therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

5200N

526800E

526900E

527100E

APPENDIX 2 - Trial Pit Records

		estigations Ir www.gii.ie	eland L	.td	Site Gateway Phase 3		Trial F Numb ITO	
lachine : 13T Excavator lethod : Trial Pit	Dimensions 1.70m X 1.10m X 1.30m			Level (mOD) 28.51	Client		Job Number 8165-10-1	
	Location 526873	3.2 E 725243.1 N	Dates 23	/10/2018	Project Contractor Ground Investigations Irela	nd	Sheet	
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	
			28.11		rare plastic fragments.	won slightly sandy slightly gravelly casional boulders of granite and htly gravelly silty CLAY with peat		
Ian 		· · · ·	· · ·		Remarks Groundwater encountered at Trial pit stable Infiltration test carried out in Trial pit backfilled on comple	-		

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

			vestigations Ir www.gii.ie	eland L	td	Site Gateway Phase 3		Trial Pi Numbe
Machine:13 Method:Tr		Dimensio 2.30m X	ons 1.20m X 2.00m		Level (mOD) 28.94	Client		Job Numbe 8165-10
		Location 526	808.6 E 725136.6 N	Dates 23	/10/2018	Project Contractor Ground Investigations Irela	nd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
				28.79 27.44 27.34 26.94	(0.15)	MADE GROUND: Brown/g COBBLES of granite with c and fragments of plastic ar Dark brown slightly sandy g sub-angular cobbles of gra Light grey very sandy sub-a	pravelly PEAT with occasional nite. Ingular to sub-rounded fine to BLES of granite with occasional sible Weathered Rock)	*****
lan	· · ·		· · · ·	· ·		Remarks No Groundwater encountere Trial pit sidewalls spalling. Infiltration test carried out in Trial pit backfilled on comple	trial pit.	
lan _	· · · · · · · · · · · · · · · · · · ·	- - - -	· · · ·	· ·		No Groundwater encountere Trial pit sidewalls spalling. Infiltration test carried out in	trial pit.	
21an _	· · · · · ·	· · · ·	· · · · · · · ·	· · ·		No Groundwater encountere Trial pit sidewalls spalling. Infiltration test carried out in	trial pit. tion.	

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

A	Ground Investigations I www.gii.ie	ound In			Ltd	Site Gateway Phase 3		Trial Pit Number TP01
Machine: Method :		Dimens	sions	Ground	d Level (mOD) 30.76	Client		Job Number 8165-10-1
		Locatio 52	on 26853.3 E 725280.5 I		4/10/2018	Project Contractor Ground Investigations Irel	and	Sheet 1/1
Depth (m)	Sample / Tes	ts Water Depth (m)	Field Reco	rds Level (mOD)	Depth (m) (Thickness)		Description	Legend
1.20 Plan	в		T,J,V T,J,V	29.2 29.1 28.4		Very soft dark brown sligh	own sandy gravelly clayey Peables and boulders of granite.	tly <u>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>
		·				No Groundwater encounter Trial pit sidewalls spalling. Trial pit backfilled on compl	ed.	
		·			· · ·	inal pit backfilled on compl	euon.	
	· ·		· ·	· ·				
					· · ·	Scale (approx)	Logged By	Figure No.

Interstant Interstant Interstant Interstant Project Contractor Shee Depth (m) Sample / Tests Water Depth (m) Field Records Level (mOD) Depth (Thickness) Description Legen 7.0 B Image: Apple and the properties of the propertie	A	Ground Investigations II www.gii.ie				eland L	_td	Site Gateway Phase 3		
Depth Sample / Tests Operation Calculation Cancel Interstigations Instand calculation Depth Sample / Tests Voites Field Records IoXX Page / Tests Cancel Interstigations Instand calculation			Dimens	sions				D) Client		Job Numb 8165-10
70 8 T.J.V 27.16 Crey wry sample slightly care signed as the sample slightly care sis sample slightly care signed as the sample slightl					5232.9 N		/10/2018		s Ireland	Sheet
70 B T,J,V 28.85 0.00 <t< th=""><th>Depth (m)</th><th>Sample / Tests</th><th>Water Depth (m)</th><th>Fiel</th><th>ld Records</th><th>Level (mOD)</th><th>Depth (m) (Thickne</th><th>ss)</th><th>Description</th><th>Legenc</th></t<>	Depth (m)	Sample / Tests	Water Depth (m)	Fiel	ld Records	Level (mOD)	Depth (m) (Thickne	ss)	Description	Legenc
. .	70 •lan _		(m)	T,J,V		29.16 28.86 28.66		0) Grey very sandy sligt sub-rounded fine to commetal and plastic. 0) metal and plastic. 0) MADE GROUND: Dependent of the period of the pe	edrock.	to rey y
			•							

	Ground Investigations In www.gii.ie			Ireland L	_td	Site Gateway Phase 3		Trial P Numbo TP0
lachine:1 lethod :⊺	3T Excavator rial Pit	Dimens	ions		Level (mOD) 29.28	Client		Job Numb 8165-10
		Locatio 52	on 16858.1 E 725243.1 N	Dates 24	l/10/2018	Project Contractor Ground Investigations Irel:	and	Sheet 1/1
Depth (m)	Sample / Te	ests Water (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	ſ	Description	Legend
				28.88	F	Very soft dark brown sligh	own sandy gravelly slightly clay of plastic. tly sandy slightly gravelly slightl	
.70	B		T,J,V T,J,V	28.63	2.40	Probable granite bedroc Complete at 2.40m	dy angular to sub-rounded fine BBLES of granite.(Possible	to
Plan .					· ·	Remarks No Groundwater encountere	ed	·
						Trial pit sidewalls spalling. Trial pit backfilled on complete	etion.	
				• •	 			
	•	• •						
•	•	· ·			<mark>.</mark>	Scale (approx)	Logged By F	Figure No.

RELAND	Grou	nd In		jations w.gii.ie	Irelar	nd Lt	d	Site Gateway Phase 3		Nur	al Pit mbei P04
Machine:13 Method :Tri		Dimens	sions		G		evel (mOD) .50	Client		Job Nur 8165	mbei
		Locatio	on 26891.2 E 7	25235.1 N	Da	ates 24/10	0/2018	Project Contractor Ground Investigations Irela	and	She	eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fi	eld Records	L (r	Level mOD) (1	Depth (m) Thickness)		Description	Lege	end
).70 Plan	В		T,J,V T,J,V Water str	ike(1) at 2.30	m.	27.70	(0.80) 0.80 (1.40) 2.20 (0.20) 2.40 -	Grey very sandy clayey su coarse GRAVEL with occa	tly sandy slightly gravelly PEA ab-angular cobbles and rare	Alke o o alke alke o o alke o alke o alke o alke o alke alke o o alke o	
		•						Groundwater encountered a Trial pit sidewalls spalling. Trial pit backfilled on comple	at 2.30m BGL - Slow Ingress. etion.		
•	 	•	•	· ·		•		cale (approx)	Logged By	Figure No.	

Method : Trial Pit 29.77 Project Contractor Ground Investigations Ireland Project Contractor Ground Investigations Ireland Depth (m) Sample / Tests Water Depth (m) Field Records Level (mOD) Depth (Thickness) Description L V Project Contractor Ground Investigations Ireland Description L V Very Soft dark brown slightly sandy gravelly slightly clayey Peat with occasional sub-angular cobbles and boulders of granite. MADE GROUND: Dark brown slightly sandy gravelly slightly clayey Peat with occasional sub-angular cobbles and boulders of granite. MADE GROUND: Dark brown slightly sandy gravelly slightly clayey Peat with occasional sub-angular cobbles and boulders of granite.	www.gii.ie Site Gateway Phase 3		
Image: Provide and the set of the second			Job Numbe 8165-10
170 B T.J.V 28.97 0.20 MADE GROUND: Brown alightly sandy alightly gravelly claps with rare fragments of plastic. 170 B T.J.V 28.97 0.80 170 T.J.V 27.97 1.80 171 2.60 Crey sandy sub-angular to sub-rounded fine to coarse GRAVEL and COBBLES of grante with rare boulders. 170 T.J.V 27.97 1.80 171 2.60 Grey sandy sub-angular to sub-rounded fine to coarse GRAVEL and COBBLES of grante with rare boulders. 171 2.60 1.00 171 2.60 171 2.60 172 1.00 173 1.00 174 2.60 175 1.00 176 1.00 176 1.00 176 1.00	24/10/2018		Sheet 1/1
1.70 B T.J.V 28.97 0.80 Very soft dark brown slightly sandy gravelly elightly boulders of granite. 1.70 B T.J.V 28.97 0.80 Very soft dark brown slightly sandy slightly gravelly PEAT. 1.70 T.J.V 28.97 0.80 Very soft dark brown slightly sandy slightly gravelly PEAT. 1.70 T.J.V 27.97 1.80 Grey very sandy sub-angular to sub-rounded fine to coarse GRAVEL and COBBLES of granite with rate boulders. 27.97 0.80 Crey slightly gravelly slightly sity clayer medium to coarse GRAVEL and COBBLES of granite with rate boulders. 27.97 2.60 27.97 2.60 28.97 2.60 27.97 2.60 28.97 2.60 27.97 2.60 28.97 2.60 27.97 2.60 28.97 2.60 28.97 2.60 28.97 2.60 28.97 3.60 Probable granite bedrack. 1.00 25.97 3.60 Probable granite bedrack. Complete at 3.80m	Field Records Level (mOD) Depth (m) Descrip	otion	Legend
Groundwater encountered at 3 75m BGL - Slow Ingress	T,J,V 29.57 0.20 MADE GROUND: Brown slightly with rare fragments of plastic. T,J,V 28.97 0.80 Very soft dark brown slightly sand clayey Peat with occasional sub- boulders of granite. T,J,V 28.97 0.80 Very soft dark brown slightly sand clayey Peat with occasional sub- boulders of granite. T,J,V 27.97 1.80 Grey very sandy sub-angular to s GRAVEL and COBBLES of granite. 27.17 2.60 Grey slightly gravelly slightly slitly SAND. Grey slightly gravelly slightly slitly slitly sandy slitly 26.97 2.80 Soft to firm grey slightly sandy slitly 1.00 1.00 Probable granite bedrock. <td>ightly sandy gravelly slightly angular cobbles and dy slightly gravelly PEAT. sub-rounded fine to coarse te with rare boulders.</td> <td></td>	ightly sandy gravelly slightly angular cobbles and dy slightly gravelly PEAT. sub-rounded fine to coarse te with rare boulders.	
	Groundwater encountered at 3 75r	n BGL - Slow Ingress.	
· · · · · · · · · ·			
Scale (approx) Logged By Figure			

	Grou	ind In	vestig wwv	ations Ir v.gii.ie	eland L	_td	Site Gateway Phase 3		Trial P Numb TP0
Machine:1	3T Excavator rial Pit	Dimens	ions			Level (mOD) 29.05	Client		Job Numb 8165-10
		Locatio 52	on 26904.3 E 72	5204.9 N	Dates 24	/10/2018	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fie	ld Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend
0.70	В		T,J,V		28.85 28.35 27.70 27.05 26.35	(0.50) 0.70 (0.65) 1.35 (0.65) 2.00 (0.70)	Very soft dark brown sligh Light grey very sandy sligh sub-rounded fine to coarse granite.	own sandy gravelly peaty Clay tly sandy slightly gravelly PEA ntly clayey sub-angular to e GRAVEL and COBBLES of	T
Plan .		·	•		• •		Remarks No Groundwater encountere Trial pit sidewalls spalling	ed.	
							Trial pit sidewalls spalling. Trial pit backfilled on compl	etion.	
					· ·				
•	· ·	•		· ·		· · ·			
						<u>.</u>	Scale (approx)	Logged By	Figure No.
						1		1	

	Gro	und In	vestiga www.ę		eland L	_td	Site Gateway Phase 3		Trial Pi Numbe TP0
Machine:13 Method :Tr	3T Excavator ial Pit	Dimens	sions			Level (mOD) 29.36	Client		Job Numbe 8165-10
		Locatio	on 26900.1 E 7251	75 4 N	Dates 24	l/10/2018	Project Contractor Ground Investigations Irel	and	Sheet 1/1
Depth (m)	Sample / Tests	Water	1	Records	Level (mOD)	Depth (m) (Thickness)	_	Description	Legend
0.70	В		T,J,V		29.06 27.76 27.36 26.66	(0.30) (0.30) (1.30) (1.30) (1.30) (0.40) (0.40) (0.70)	Dark brown slightly sandy MADE GROUND: Greyish occasional sub-angular co plastic.	r slightly gravelly peaty TOPSO n brown sandy gravelly Clay wi obbles and rare fragments of gravelly COBBLES of granite. RAVEL with occasional sub-an ple Weathered Rock)	IL. h
Plan .							Remarks No Groundwater encounter Trial pit sidewalls spalling. Trial pit backfilled on compl	ed. letion	
•				•					
				•		· · ·			
							Scale (approx)	Logged By	Figure No.

	WWW.gii.ie 13T Excavator Dimensions		vestigations www.gii.ie	lreland l	_td	Site Gateway Phase 3		Trial Pi Numbe TP0
lachine: lethod :		Dimens	ions	Ground	Level (mOD) 30.21	Client		Job Numbe 8165-10
		Locatio	on	Dates	3/10/2018	Project Contractor		Sheet
		52	26886.3 E 725139.6 N	20	5/10/2010	Ground Investigations Irela	nd	1/1
Depth (m)	Sample / Tes	ts Water Depth (m)	Field Record	s Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
20 Plan	в		T,J,V	30.11		MADE GROUND: Dark bro clayey Peat with occasiona boulders of granite and pie	sub-rounded fine to coarse r granite.(Possible Weathered	y
						No Groundwater encountere Trial pit sidewalls collapsed Trial pit backfilled on comple	d. below 0.80m tion.	
		·						
	• •	•						
				-				
		•	· ·	· ·				
	· · ·		· · ·	· · ·	· · ·	Scale (approx)	Logged By Fig	gure No.

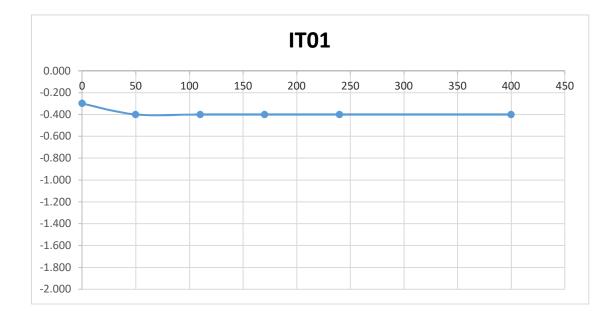
		ina in	vestigations li www.gii.ie	reland L	.td	Site Gateway Phase 3	Gateway Phase 3	
Machine : 1 Method : 1	13T Excavator Frial Pit	Dimens	ions		Level (mOD) 30.64	Client		Job Numb 8165-10
		Locatio	n 16821.9 E 725206.3 N	Dates 23	/10/2018	Project Contractor Ground Investigations Irela	nd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
			T,J,V T,J,V	29.89	(0.10) - 0.10 - 0.10 - 0.65) - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 	MADE GROUND: Brown s with tree roots and and occ granite. MADE GROUND: Dark bro slightly clayey PEAT with o cobbles and fragments of b	ightly sandy slightly gravelly Clay asional sub-rounded cobbles of wn slightly sandy slightly gravel ccasional angular to sub-rounded rick. y sandy slightly gravelly clayey r to sub-angular cobbles of lders and lenses of grey sandy d fine to coarse gravel.	
Plan	· · ·	- - -	· · · ·	· ·		Remarks No Groundwater encountere Trial pit sidewalls collapsed Trial pit backfilled on comple	below 0.80m	
lan _	· · ·	· · ·	· · · ·	· ·		No Groundwater encountere Trial pit sidewalls collapsed	below 0.80m	
ام ۱۹۵۱ <u>.</u>		· · · ·		· · ·	· · ·	No Groundwater encountere Trial pit sidewalls collapsed	below 0.80m tion.	

	0.0	und In	vestigations www.gii.ie	Ireland L	_td	Site Gateway Phase 3	Trial Pir Numbe
lachine:1 lethod :1	3T Excavator rial Pit	Dimens		Ground	Level (mOD) 28.91	Client	Job Numbe 8165-10-
		Locatio 52	on 26808.3 E 725169.2 N	Dates 23	3/10/2018	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Test	Water Depth (m)	Field Records	s Level (mOD)	Depth (m) (Thickness	Description	Legend
			T,J,V T,J,V	28.81 28.76 28.11 28.11	(0.10) 0.10 0.15 (0.65) 0.80 0.80 (1.40) (1.40)	MADE GROUND: Dark grey angular fine to coarse Gravel(Crushed Rock fill). TARMACADAM MADE GROUND: Grey sandy sandy gravelly Clay with fragments of concrete and occasional angular to sub-angular cobbles of granite. Very soft dark brown slightly sandy slightly gravelly slightly clayey PEAT with occasional boulders of granite.	
Plan .			· · ·			Remarks Grounwater encountered at 1.0m BGL - Slight Seepage. Trial pit sidewalls spalling Trial pit backfilled on completion.	
		•	· · ·			Trial pit backfilled on completion.	
					1		
				-			
•	· · ·		· ·		· · ·		
	· · ·		· ·	• • •	· · ·	Scale (approx) Logged By Fig	ure No.

		na m	vestigations li www.gii.ie	reland L	td	Site Gateway Phase 3		Trial F Numb	
Machine:1: Method :Ti	3T Excavator rial Pit	Dimens			Level (mOD) 29.13	Client		Job Numb 8165-1	
		Locatio 52	26832 E 725142.3 N	Dates 23	/10/2018	Project Contractor Ground Investigations Irela	nd	Sheet 1/ ⁻	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	
			T,J,V	29.03 27.98 27.78	(0.10) - 0.10 - 0.10 - (1.05) - 1.15 - (0.20) - 1.35 - 1.35	Soft dark brown sandy grav sub-angular cobbles and ra Light brownish grey very sa sub-rounded fine to coarse	whish grey very sandy slightly rounded fine to coarse Gravel with s of granite. velly PEAT with occasional are boulders of granite. andy slightly clayey sub-angular to c GRAVEL and COBBLES of		
			T,J,V	25.78		granite with occasional bot	Iders.(Possible Weathered Rock		
					- 3.35 -	Probable granite bedrock	ς.		
'lan _	· · · · · · · · · · · · · · · · · · ·	·	· · · ·	· · ·			d		
Plan .	· · ·	· · ·		· · ·		Complete at 3.35m	d		

GROUNI		G	roun	d In		gatior /w.gii.i	ns Irela ie	and L	td		Site Gateway Phase 3			Trial Pit Number TP12	
Machine Method		T Excavator al Pit	1	Dimens	ions				Level (mOl 28.52)	Client			Job Number 8165-10-1	
				Locatio		725147.3	N	Dates 23	/10/2018		Project Contractor Ground Investigations Irela	nd		Sheet 1/1	
Depth (m)	ı	Sample / T	ests	Water Depth (m)	F	ield Reco	ords	Level (mOD)	Depth (m) (Thicknes	s)	D	escription	L	egend	
					T,J,V T,J,V			28.42 27.02 26.92 26.72 25.82)))))))))))))))	Cravel with frequent angula Very soft dark brown sandy angular cobbles and occas Light brown very gravelly sl SAND with frequent angula granite. Light brownish grey very sa coarse GRAVEL and COB boulders.(Possible Weather Probable granite bedrock Complete at 2.70m	ry sandy angular fine to coars ar cobbles and boulders.	e seto al		
Plan	•		•	·						١	temarks No Groundwater encountere Trial pit sidewalls spalling Trial pit backfilled on comple	d.			
	·		•	·			·			T	Trial pit backfilled on comple	tion.			
	•		•												
										Sc	cale (approx)	Logged By	-igure 1	No.	

A	Gro	und In		gations /w.gii.ie	Ireland	Ltd		Site Gateway Phase 3		Trial P Numb TP1
Machine:1: Method :Ti	3T Excavator rial Pit	Dimens	sions		Grour	1 d Leve 29.08	e l (mOD) 3	Client		Job Numb 8165-10
		Locatio 52	on 26827 E 72	25113.5 N	Dates	23/10/2	018	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Test	Water Depth (m)	F	ield Records	s Leve (mOD	l [)) (Thi	Depth (m) ickness)		Description	Legend
Plan .			T,J,V T,J,V		28. 28. 28. 27. 26.		(0.10) 0.10 (0.60) 0.70 (0.30) 1.00 (0.20) 1.20 (1.70) 2.90	SAND with frequent angul boulders of granite with ra Dark brown very sandy gra frequent angular cobbles a Light brown slightly clayey with frequent angular cob	very gravelly medium to coarse ar to sub-angular cobbles and re fragments of plastic.	rare
								No Groundwater encountere Trial pit sidewalls spalling Trial pit backfilled on compl	ed. etion.	
					•	•				
	• •		•							
•			•				. s	icale (approx)	Logged By F	Figure No.


lethod : Trial Pit 29.64 8165-1 Location Scessol.1 E 725111.5 N Project Contractor Shee Ground Investigations Ireland 1// Depth (m) Sample / Tests Water Depth (m) Project Contractor Ground Investigations Ireland Legen Depth (m) Sample / Tests Water Depth (m) Project Contractor Shee Depth (m) Title Records Level (n00) Project Contractor Ground Investigations Ireland 1// Depth (m) Title Records Depth (m) Depth (ThickNess) Description Legen 1// Total Records Level Description Legen 1// Total Records MDE GROUND: Brown slightly sandy slightly gravelly Clay with tree roots and and occasional sub-rounded cobbles of granite. Brown slightly sandy slightly gravelly Clay with cocasional sub-rounded cobbles of granite. 1// T,J,V 27.94 1.10 Light grav very sandy sub-angular to sub-rounded fine to coarse GRAVEL and COBBLES of granite with occasional sub-angular boulders. (Possible Weathered Rock) Coars		Grou	und In	vestigation www.gii.ie	s Ireland I	_td	Site Gateway Phase 3		Trial Pi Numbe TP14
Depth Sample / Tests View Fleid Records Low Organity Cound Investigations Instand Cegen Depth Sample / Tests View Fleid Records Low Path Depth Dephh Depth Depth			Dimens	ions	Ground		Client		Job Numbe 8165-10
Plan T.J.V 20.64 (0.10) 29.39 MADE GROUND: Brown slightly andy slightly gravely Clay with monocold and and cooling a						3/10/2018	-	and	Sheet 1/1
Plan Plan Plan	Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ds Level (mOD)	Depth (m) (Thickness)		Description	Legend
No Groundwater encountered. Trial pit sidewalls spalling. Trial pit backfilled on completion.	Plan			T,J,V	29.39	(0.10) 0.10 (0.15) 0.25 (1.45) (1.45) (0.50) (0	MADE GROUND: Brown s with tree roots and and oc granite. Brown slightly sandy sligh occasional sub-angular co MADE GROUND: Dark br clayey Peat with occasion boulders of granite and fra Light grey very sandy sub- coarse GRAVEL and COE sub-angular boulders.(Pos Probable granite bedroc Complete at 2.20m	tly gravelly TOPSOIL with obbles of granite. own slightly sandy gravelly sligh al sub-rounded cobbles and agments of wood and plastic.	tly
. <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>No Groundwater encountere Trial pit sidewalls spalling. Trial pit backfilled on compl</td> <td>ed. etion.</td> <td></td>							No Groundwater encountere Trial pit sidewalls spalling. Trial pit backfilled on compl	ed. etion.	
Scale (approx) Logged By Figure No.	•	· ·	•	· ·	· ·				
						-		1 1	

APPENDIX 3 – Infiltration Test Results

IT01 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.7m x 1.10m x 1.300m (L x W x D)

Date	Time	Water level (m bgl)
24/10/2018	0	-0.300
24/10/2018	50	-0.400
24/10/2018	110	-0.400
24/10/2018	170	-0.400
24/10/2018	240	-0.400
24/10/2018	400	-0.400

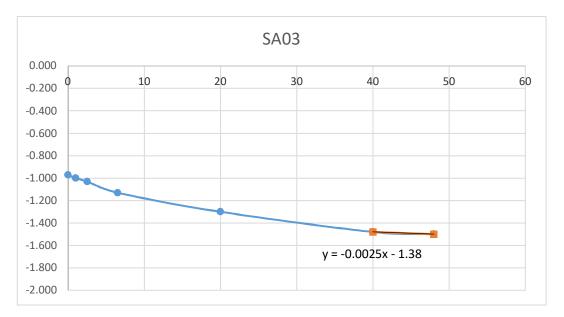
	*	Soakaway failed - Pi	t backfilled	
Start depth	Depth of Pit	Diff	75% full	25%full
0.30	1.300	1.000	0.55	1.05



IT02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.30m x 1.20m 2.00m (L x W x D)

Date	Time	Water level (m bgl)
24/10/2018	0	-0.970
24/10/2018	0.5	-1.010
24/10/2018	2	-1.160
24/10/2018	4	-1.250
24/10/2018	7	-1.350
24/10/2018	11	-1.470
24/10/2018	15	-1.540
24/10/2018	20	-1.620

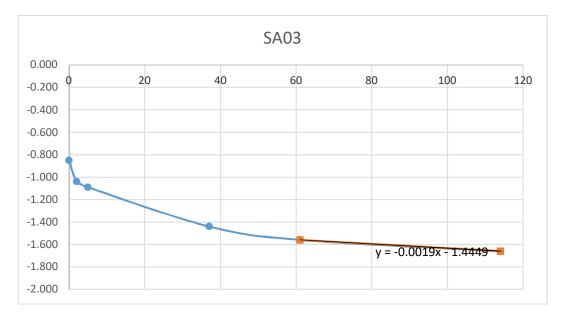
Start depth 0.97	Depth of Pit 2.000		Diff 1.030	75% full 1.2275	25%full 1.7425
Length of pit (m) 2.300)Width of pit (m) 1.200			75-25Ht (m) 0.515	Vp75-25 (m3) 1.42
Tp75-25 (from g	ıraph) (s)	1861		50% Eff Depth 0.515	ap50 (m2) 6.365
f =	1.200E-04	m/s			



IT02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.30m x 1.20m 2.00m (L x W x D)

Date	Time	Water level (m bgl)
24/10/2018	0	-0.970
24/10/2018	1	-1.000
24/10/2018	2.5	-1.030
24/10/2018	6.5	-1.130
24/10/2018	20	-1.300
24/10/2018	40	-1.480
24/10/2018	48	-1.500

Start depth 0.97	Depth of Pit 2.000		Diff 1.030	75% full 1.2275	25%full 1.7425
Length of pit (m) 2.300	Width of pit (m) 1.200			75-25Ht (m) 0.515	Vp75-25 (m3) 1.42
Tp75-25 (from g	raph) (s)	12360		50% Eff Depth 0.515	ap50 (m2) 6.365
f =	1.807E-05	m/s		0.010	0.000



IT02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.30m x 1.20m 2.00m (L x W x D)

Date	Time	Water level (m bgl)
24/10/2018	0	-0.850
24/10/2018	2	-1.040
24/10/2018	5	-1.090
24/10/2018	37	-1.440
24/10/2018	61	-1.560
24/10/2018	114	-1.660

Start depth 0.97	Depth of Pit 2.000		Diff 1.030	75% full 1.2275	25%full 1.7425
Length of pit (m) 2.300	Width of pit (m) 1.200			75-25Ht (m) 0.515	Vp75-25 (m3) 1.42
Tp75-25 (from g	raph) (s)	16263		50% Eff Depth 0.515	ap50 (m2) 6.365
f =	1.373E-05	m/s		0.010	0.000

APPENDIX 4 – Laboratory Results

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Barry Sexton
Date :	13th November, 2018
Your reference :	8165-10-18
Our reference :	Test Report 18/17300 Batch 1
Location :	Gateway
Date samples received :	26th October, 2018
Status :	Final report
Issue :	1

Twenty eight samples were received for analysis on 26th October, 2018 of which twenty eight were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

6 June

Bruce Leslie Project Co-ordinator

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300													
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30				
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05				
Depth	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	Please se	otes for all		
COC No / misc											abbrevi	cronyms		
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1	1	1			Method	
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	LOD/LOR	Units	No.	
Antimony	1	1	1	<1	<1	<1	<1	1	<1	<1	<1	mg/kg	TM30/PM15	
Arsenic [#]	3.2	3.7	3.8	2.3	4.4	2.7	24.1	2.1	3.6	10.4	<0.5	mg/kg	TM30/PM15	
Barium [#]	28	28	24	39	40	46	38	21	65	43	<1	mg/kg	TM30/PM15	
Cadmium [#]	0.1	0.1	0.2	<0.1	0.3	<0.1	0.5	<0.1	0.8	0.7	<0.1	mg/kg	TM30/PM15	
Chromium [#]	71.3	62.8	75.4	45.5	53.2	84.4	72.0	80.9	45.6	23.0	<0.5	mg/kg	TM30/PM15	
Copper [#]	42	133	52	28	61	20	164	28	213	223	<1	mg/kg	TM30/PM15	
Lead [#]	32	27	22	45	46	12	74	17	20	37	<5	mg/kg	TM30/PM15	
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15	
Molybdenum [#]	4.4	4.7	1.7	2.6	7.8	6.3	15.3	4.8	7.0	10.3	<0.1	mg/kg	TM30/PM15 TM30/PM15	
Nickel [#] Selenium [#]	7.3 2	4.1 5	7.1	4.8 <1	5.3 4	5.8 1	8.1 5	5.6 <1	7.8	5.2 8	<0.7 <1	mg/kg mg/kg	TM30/PM15 TM30/PM15	
Zinc [#]	29	10	24	28	26	32	27	32	39	23	<5	mg/kg	TM30/PM15	
Zinc	20	10	24	20	20	02	21	02	00	20	~0	ing/ig		
PAH MS														
Naphthalene #	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Acenaphthylene	<0.06 _{AA}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Acenaphthene #	<0.10 _{AA}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8	
Fluorene #	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Phenanthrene [#]	<0.06 _{AA}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8	
Anthracene #	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Fluoranthene [#]	<0.06 _{AA}	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03 <0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8 TM4/PM8	
Pyrene [#] Benzo(a)anthracene [#]	<0.06 _{AA} <0.12 _{AA}	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	<0.03	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	mg/kg mg/kg	TM4/PM8 TM4/PM8	
Chrysene [#]	<0.12AA <0.04AA	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	mg/kg	TM4/PM8	
Benzo(bk)fluoranthene #	<0.14 _{AA}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8	
Benzo(a)pyrene [#]	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Indeno(123cd)pyrene [#]	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Dibenzo(ah)anthracene #	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Benzo(ghi)perylene [#]	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
Coronene	<0.08 _{AA}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8	
PAH 6 Total [#]	<0.44 _{AA}	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8	
PAH 17 Total	<1.28 _{AA}	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8	
Benzo(b)fluoranthene	<0.10 _{AA}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8	
Benzo(k)fluoranthene	<0.04 _{AA}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8	
Benzo(j)fluoranthene	<2 _{AA}	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8	
PAH Surrogate % Recovery	102 _{AA}	108	106	104	119	103	108	102	117	105	<0	%	TM4/PM8	
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16	

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300										-					
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30						
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05						
Depth	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	Disease	Diagon and attached notas fo				
COC No / misc												Please see attached notes for abbreviations and acronyms				
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date																
-																
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method			
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018			No.			
TPH CWG																
Aliphatics																
>C5-C6 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12			
>C6-C8 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12			
>C8-C10 >C10-C12 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 <0.2	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 <0.2	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12 TM5/PM8/PM16			
>C10-C12" >C12-C16 [#]	<0.2	<0.2 <4	<0.2 <4	<0.2	<0.2	<0.2 <4	<0.2	<0.2	<0.2 <4	<0.2 <4	<0.2 <4	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16			
>C12-C16 >C16-C21#	<7	<7	<7	<7	<7	<7	22	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16			
>C21-C35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16			
>C35-C40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16			
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM38/PM8/PM12/PM16			
>C6-C10	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12			
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16			
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16			
Aromatics																
>C5-EC7#	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12			
>EC7-EC8#	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12			
>EC8-EC10 [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12 TM5/PM8/PM16			
>EC10-EC12 [#] >EC12-EC16 [#]	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	mg/kg mg/kg	TM5/PM8/PM16			
>EC12-EC10	<7	<7	<7	<7	<7	<7	29	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16			
>EC21-EC35 [#]	25	157	<7	<7	329	34	242	<7	118	310	<7	mg/kg	TM5/PM8/PM16			
>EC35-EC40	<7	29	<7	<7	61	15	51	<7	<7	44	<7	mg/kg	TM5/PM8/PM16			
Total aromatics C5-40	<26	186	<26	<26	390	49	322	<26	118	354	<26	mg/kg	TM5/TM38/PM8/PM12/PM18			
Total aliphatics and aromatics(C5-40)	<52	186	<52	<52	390	<52	322	<52	118	354	<52	mg/kg	TM5/TM38/PM8/PM12/PM16			
>EC6-EC10#	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12			
>EC10-EC25	<10	<10	<10	<10	<10	<10	58	<10	<10	40	<10	mg/kg	TM5/PM8/PM16			
>EC25-EC35	51	146	<10	<10	308	49	196	<10	103	267	<10	mg/kg	TM5/PM8/PM16			
	sv	sv	sv	-	sv	sv	sv	-	sv	sv	-		Th (0.4 / Ph (4.0			
MTBE [#]	<5 ^{\$V}	<5 ^{SV}	<5 ^{\$V} <5 ^{\$V}	<5	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5	<5 ^{sv}	<5 ^{SV}	<5	ug/kg	TM31/PM12 TM31/PM12			
Benzene [#]	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5 <5	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5 <5	<5 ^{SV}	<5 ^{SV}	<5 <5	ug/kg	TM31/PM12 TM31/PM12			
Ethylbenzene [#]	<5 <5 ^{SV}	<5 <5 ^{SV}	<5 <5 ^{SV}	<5	<5 <5 ^{SV}	<5 <5 ^{SV}	<5 <5 ^{SV}	<5	<5 <5 SV	<5 <5 ^{SV}	<5	ug/kg ug/kg	TM31/PM12			
m/p-Xylene #	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5	<5 ^{SV}	<5 ^{SV}	<5 <5 ^{SV}	<5	<5 <5 ^{sv}	<5 <5 ^{\$V}	<5	ug/kg	TM31/PM12			
o-Xylene [#]	<5 ^{SV}	<5 ^{sv}	<5 <5 ^{sv}	<5	<5 ^{sv}	<5 ^{sv}	<5 ^{sv}	<5	<5 ^{SV}	<5 <5 ^{sv}	<5	ug/kg	TM31/PM12			
PCB 28 [#]	<5	<5	<5	<5	<50 _{AB}	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8			
PCB 52#	<5	<5	<5	<5	<50 _{AB}	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8			
PCB 101 [#]	<5	<5	<5	<5	<50 _{AB}	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8			
PCB 118 [#]	<5	<5	<5	<5	<50 _{AB}	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8			
PCB 138 [#]	<5	<5	<5	<5	<50 _{AB}	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8			
PCB 153 [#]	<5	<5	<5	<5	<50 _{AB}	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8			
PCB 180 [#]	<5	<5	<5	<5	<50 _{AB}	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8			
Total 7 PCBs [#]	<35	<35	<35	<35	<350 _{AB}	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8			

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300													
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30				
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05				
Depth	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50		otes for all		
COC No / misc											abbrevi	cronyms		
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		1		
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.	
Date of Receipt														
Natural Moisture Content Moisture Content (% Wet Weight)	23.9 19.3	120.9 54.7	33.8 25.3	11.2 10.0	134.8 57.4	23.0 18.7	141.9 58.7	10.9 9.8	87.9 46.8	265.2 72.6	<0.1 <0.1	%	PM4/PM0 PM4/PM0	
Nobilate Content (76 Wet Weight)	13.5	04.7	20.0	10.0	57.4	10.7	50.7	5.0	40.0	12.0	<0.1	70	1 101-471 1010	
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20	
Sulphate as SO4 (2:1 Ext) #	-	0.0215	-	-	-	-	-	-	-	0.0642	<0.0015	g/l	TM38/PM20 NONE/NONE	
Chromium III	71.3	62.8	75.4	45.5	53.2	84.4	72.0	80.9	45.6	23.0	<0.5	mg/kg	NONE/NONE	
Total Organic Carbon [#]	3.60	10.03	4.19	0.62	21.04	3.59	16.28	0.17	17.83	29.57	<0.02	%	TM21/PM24	
рН#	7.44	4.96	7.58	7.15	5.11	4.58	5.72	7.94	7.39	6.06	<0.01	pH units	TM73/PM11	
Mass of raw test portion	0.1132	0.171	0.1358	0.1005	0.1959	0.1144	0.1582	0.1022	0.1894	0.2135		kg	NONE/PM17	
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17	

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300														
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55,57,59	56,58,60					
Sample ID	TP06	TP06	TP07	TP07	TP08	TP08	TP09	TP09	TP10	TP10					
Depth	0.50	2.00	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	Please se	Please see attached notes fo			
COC No / misc											abbrevi	cronyms			
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	24/10/2018	24/10/2018	24/10/2018	24/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1	1	1	1	1			Method		
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	LOD/LOR	Units	No.		
Antimony	<1	<1	<1	1	<1	<1	1	1	1	2	<1	mg/kg	TM30/PM15		
Arsenic [#]	8.0	2.2	4.1	4.2	2.2	4.3	3.0	2.6	2.5	3.4	<0.5	mg/kg	TM30/PM15		
Barium [#]	29	20	35	35	29	31	35	34	26	35	<1	mg/kg	TM30/PM15		
Cadmium [#]	0.6	0.5	0.3	0.4	0.2	0.3	<0.1	<0.1	<0.1	0.3	<0.1	mg/kg	TM30/PM15		
Chromium [#]	49.1	57.6	29.9	75.1	103.5	77.6	74.2	94.5	78.2	65.7	<0.5	mg/kg	TM30/PM15		
Copper [#]	45	38	19	32	14	18	47	42	17	78	<1	mg/kg	TM30/PM15		
Lead [#]	17	24	37	32	15	24	28	20	29	14	<5	mg/kg	TM30/PM15		
Mercury #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15		
Molybdenum [#]	4.9	3.1	2.8	5.4	6.8	6.0	6.0	6.8	2.4	3.3	<0.1	mg/kg	TM30/PM15		
Nickel [#]	4.8	5.8	8.6	7.2	5.0	7.8	5.7	6.1	5.9	5.7	<0.7	mg/kg	TM30/PM15		
Selenium [#]	2 33	<1 37	<1	<1 43	1 14	1	2 32	1 36	1	4	<1	mg/kg	TM30/PM15		
Zinc [#]	33	- 57	52	43	14	25	32	30	21	14	<5	mg/kg	TM30/PM15		
PAH MS															
Naphthalene #	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Acenaphthylene	<0.30 _{AB}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.30 _{AB}	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8		
Acenaphthene #	<0.50 _{AB}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.50 _{AB}	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8		
Fluorene [#]	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Phenanthrene [#]	<0.30 _{AB}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.30 _{AB}	<0.03	0.20	<0.03	<0.03	mg/kg	TM4/PM8		
Anthracene #	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	0.05	<0.04	<0.04	mg/kg	TM4/PM8		
Fluoranthene [#]	<0.30 _{AB}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.30 _{AB}	<0.03	0.25	<0.03	<0.03	mg/kg	TM4/PM8		
Pyrene #	<0.30 _{AB}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.30 _{AB}	<0.03	0.20	<0.03	<0.03	mg/kg	TM4/PM8		
Benzo(a)anthracene [#] Chrysene [#]	<0.60 _{AB}	<0.06 <0.02	<0.06 <0.02	<0.06 <0.02	<0.06 <0.02	<0.06 <0.02	<0.60 _{AB}	<0.06 <0.02	0.11	<0.06 <0.02	<0.06 <0.02	mg/kg	TM4/PM8 TM4/PM8		
Chrysene Benzo(bk)fluoranthene #	<0.20 _{AB}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.20 _{AB} <0.70 _{AB}	<0.02	0.13	<0.02	<0.02	mg/kg mg/kg	TM4/PM8		
Benzo(a)pyrene [#]	<0.70 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	0.08	<0.04	<0.04	mg/kg	TM4/PM8		
Indeno(123cd)pyrene [#]	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Dibenzo(ah)anthracene [#]	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Benzo(ghi)perylene [#]	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Coronene	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.40 _{AB}	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
PAH 6 Total [#]	<2.20 _{AB}	<0.22	<0.22	<0.22	<0.22	<0.22	<2.20 _{AB}	<0.22	0.48	<0.22	<0.22	mg/kg	TM4/PM8		
PAH 17 Total	<6.40 _{AB}	<0.64	<0.64	<0.64	<0.64	<0.64	<6.40 _{AB}	<0.64	1.17	<0.64	<0.64	mg/kg	TM4/PM8		
Benzo(b)fluoranthene	<0.50 _{AB}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.50 _{AB}	<0.05	0.11	<0.05	<0.05	mg/kg	TM4/PM8		
Benzo(k)fluoranthene	<0.20 _{AB}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.20 _{AB}	<0.02	0.04	<0.02	<0.02	mg/kg	TM4/PM8		
Benzo(j)fluoranthene	<10 _{AB}	<1	<1	<1	<1	<1	<10 _{AB}	<1	<1	<1	<1	mg/kg	TM4/PM8		
PAH Surrogate % Recovery	97 _{AB}	102	99	100	96	97	⁹⁴ AB	97	93	110	<0	%	TM4/PM8		
Mineral Oil (C10-C40)	331	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16		

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300														
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55,57,59	56,58,60					
Sample ID	TP06	TP06	TP07	TP07	TP08	TP08	TP09	TP09	TP10	TP10					
Depth	0.50	2.00	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	Please se	Please see attached notes for abbreviations and acronyms			
COC No / misc															
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	24/10/2018	24/10/2018	24/10/2018	24/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1	1	1	1	1			Method		
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	LOD/LOR	Units	No.		
TPH CWG															
Aliphatics															
>C5-C6 [#]	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12		
>C6-C8 [#]	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12		
>C8-C10	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12		
>C10-C12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16		
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>C16-C21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>C21-C35#	233	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>C35-C40	98	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
Total aliphatics C5-40	331	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM38/PM8/PM12/PM16		
>C6-C10	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12		
>C10-C25	15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16		
>C25-C35 Aromatics	212	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16		
>C5-EC7 [#]	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	ma/ka	TM36/PM12		
>C5-EC7 >EC7-EC8 [#]	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	mg/kg mg/kg	TM36/PM12		
>EC8-EC10 [#]	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	mg/kg	TM36/PM12		
>EC10-EC12#	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.2	mg/kg	TM5/PM8/PM16		
>EC12-EC16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>EC21-EC35 #	567	<7	<7	<7	<7	<7	93	50	77	181	<7	mg/kg	TM5/PM8/PM16		
>EC35-EC40	252	<7	<7	<7	<7	<7	18	<7	18	35	<7	mg/kg	TM5/PM8/PM16		
Total aromatics C5-40	819	<26	<26	<26	<26	<26	111	50	95	216	<26	mg/kg	TM5/TM38/PM8/PM12/PM16		
Total aliphatics and aromatics(C5-40)	1150	<52	<52	<52	<52	<52	111	<52	95	216	<52	mg/kg	TM5/TM38/PM8/PM12/PM16		
>EC6-EC10#	<0.1 ^{SV}	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12		
>EC10-EC25	34	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16		
>EC25-EC35	529	<10	<10	<10	<10	<10	95	50	80	174	<10	mg/kg	TM5/PM8/PM16		
	_SV		, r	_SV		_SV	<5 ^{\$V}	_SV		<5 ^{\$V}			TM31/PM12		
MTBE [#]	<5 ^{\$V} <5 ^{\$V}	<5	<5	<5 ^{\$V} <5 ^{\$V}	<5	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5		<5	ug/kg			
Benzene [#]	<5 <5 ^{SV}	<5	<5	<5 <5 ^{SV}	<5	<5 <5 ^{SV}	<5 <5 ^{SV}	<5 ^{SV}	<5	<5 ^{\$V} 163 ^{\$V}	<5	ug/kg	TM31/PM12 TM31/PM12		
Toluene [#]	<5 <5 ^{SV}	<5 <5	<5 <5	<5 [°]	<5 <5	<5" <5 ^{\$V}	<5 <5 ^{SV}	<5 [°]	<5 <5	<5 ^{SV}	<5 <5	ug/kg	TM31/PM12 TM31/PM12		
Ethylbenzene # m/p-Xylene #	<5 <5 ^{SV}	<5	<5	<5 <5 ^{SV}	<5	<5 <5 ^{SV}	<5 <5 ^{SV}	<5 <5 ^{SV}	<5	<5 <5 ^{SV}	<5	ug/kg ug/kg	TM31/PM12		
o-Xylene #	<5 <5 ^{SV}	<5	<5	<5 <5 ^{SV}	<5	<5 <5 ^{SV}	<> <5 ^{\$V}	<5 <5 ^{SV}	<5	<5 <5 ^{SV}	<5	ug/kg	TM31/PM12		
	10			10		10	10	10		10		0.0			
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 52#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8		

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300													
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55,57,59	56,58,60				
Sample ID	TP06	TP06	TP07	TP07	TP08	TP08	TP09	TP09	TP10	TP10				
Depth	0.50	2.00	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	Please se	otes for all		
COC No / misc											abbrevi	abbreviations and acrony		
Containers	VJT													
Sample Date	24/10/2018	24/10/2018	24/10/2018	24/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018				
Sample Type	Soil													
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method	
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018		Units	No.	
Natural Moisture Content	48.1	15.4	14.7	25.8	22.4	32.0	47.9	39.1	13.7	117.5	<0.1	%	PM4/PM0	
Moisture Content (% Wet Weight)	32.5	13.4	12.8	20.5	18.3	24.2	32.4	28.1	12.1	54.0	<0.1	%	PM4/PM0	
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20	
Sulphate as SO4 (2:1 Ext) #	-	-	-	-	-	-	-	-	-	-	<0.0015	g/l	TM38/PM20	
Chromium III	49.1	57.6	29.9	75.1	103.5	77.6	74.2	94.5	78.2	65.7	<0.5	mg/kg	NONE/NONE	
			. :-	0				0						
Total Organic Carbon #	8.02	0.08	1.47	2.59	1.52	2.30	4.52	2.50	2.67	22.72	<0.02	%	TM21/PM24	
рН#	7.35	7.94	8.01	7.99	8.04	7.55	5.83	6.53	7.41	6.86	<0.01	pH units	TM73/PM11	
Mass of raw test portion	0.1305	0.104	0.1043	0.1165	0.1043	0.1143	0.12	0.1504	0.1123	0.1262		kg	NONE/PM17	
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17	

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300								 	_		
J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84				
Sample ID	TP11	TP11	TP12	TP12	TP13	TP13	TP14	TP14				
Depth	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50		Please co	e attached r	otos for all
COC No / misc											cronyms	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date								23/10/2018				
-												
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018				INO.
Antimony	<1	<1	<1	<1	2	2	4	<1		<1	mg/kg	TM30/PM15
Arsenic [#]	1.6	1.2	1.6	2.5	1.1	1.2	3.8	4.3		<0.5	mg/kg	TM30/PM15
Barium [#]	19	13	20	23	22	16	55	32		<1	mg/kg	TM30/PM15
Cadmium [#]	<0.1	<0.1	0.1	0.2	<0.1	<0.1	0.2	0.3		<0.1	mg/kg	TM30/PM15
Chromium [#]	66.6 23	66.6 15	31.1 27	42.6 9	91.8 19	113.9 18	189.6 29	43.0 45		<0.5 <1	mg/kg	TM30/PM15 TM30/PM15
Copper [#] Lead [#]	23 16	15 16	15	9 15	19	18 21	29 18	45 28		<1 <5	mg/kg mg/kg	TM30/PM15 TM30/PM15
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM30/PM15
Molybdenum [#]	4.1	6.1	1.3	2.7	0.9	1.3	3.0	3.1		<0.1	mg/kg	TM30/PM15
Nickel [#]	5.1	5.7	5.5	5.8	6.2	7.6	8.9	7.2		<0.7	mg/kg	TM30/PM15
Selenium [#]	<1	<1	<1	<1	<1	<1	1	2		<1	mg/kg	TM30/PM15
Zinc [#]	33	29	31	26	26	25	27	35		<5	mg/kg	TM30/PM15
PAH MS												
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	< 0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04 <0.03	<0.04	<0.04 <0.03	<0.04 <0.03		<0.04	mg/kg	TM4/PM8 TM4/PM8
Fluoranthene [#]	<0.03	<0.03 <0.03	<0.03 <0.03	0.05	<0.03	<0.03 <0.03	<0.03	<0.03		<0.03 <0.03	mg/kg mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.05	<0.03	<0.05	<0.04	<0.05	<0.03	<0.03	<0.05		<0.05	mg/kg	TM4/PM8
Chrysene [#]	<0.00	<0.00	<0.02	0.03	<0.02	<0.00	<0.00	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
PAH 6 Total [#]	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22		<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64		<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1		<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	100	100	98	98	100	96	97	98		<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30		<30	mg/kg	TM5/PM8/PM16

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300								 	•					
J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84							
Sample ID	TP11	TP11	TP12	TP12	TP13	TP13	TP14	TP14							
Depth	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50		Please see attached notes for					
COC No / misc										abbreviations and acronyms					
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT							
Sample Date	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018							
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil							
Batch Number															
	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.			
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018							
TPH CWG															
Aliphatics	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}		<0.1	mg/kg	TM36/PM12			
>C5-C8 >C6-C8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1		<0.1	mg/kg	TM36/PM12			
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1		<0.1	mg/kg	TM36/PM12			
>C10-C12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16			
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16			
>C16-C21 #	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16			
>C21-C35#	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16			
>C35-C40	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16			
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26		<26	mg/kg	TM5/TM38/PM8/PM12/PM16			
>C6-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}		<0.1	mg/kg	TM36/PM12			
>C10-C25 >C25-C35	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10		<10 <10	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16			
Aromatics	<10	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	1 MD/PM0/PM10			
>C5-EC7 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}		<0.1	mg/kg	TM36/PM12			
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12			
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}		<0.1	mg/kg	TM36/PM12			
>EC10-EC12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16			
>EC12-EC16 [#]	<4	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16			
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16			
>EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	80		<7	mg/kg	TM5/PM8/PM16			
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16			
Total aromatics C5-40 Total aliphatics and aromatics(C5-40)	<26 <52	<26	<26 <52	<26 <52	<26	<26 <52	<26 <52	80		<26 <52	mg/kg	TM5/TM38/PM8/PM12/PM16 TM5/TM38/PM8/PM12/PM16			
>EC6-EC10 [#]	<0.1	<52 <0.1	<0.1	<0.1	<52 <0.1	<0.1	<0.1	80 <0.1 ^{SV}		<0.1	mg/kg mg/kg	TM36/PM12			
>EC10-EC25	<10	<10	<10	<10	<10	<10	<10	<0.1		<10	mg/kg	TM5/PM8/PM16			
>EC25-EC35	<10	<10	<10	<10	<10	<10	<10	89		<10	mg/kg	TM5/PM8/PM16			
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}		<5	ug/kg	TM31/PM12			
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}		<5	ug/kg	TM31/PM12			
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}		<5	ug/kg	TM31/PM12			
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}		<5	ug/kg	TM31/PM12			
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}		<5	ug/kg	TM31/PM12			
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5 ^{\$V}		<5	ug/kg	TM31/PM12			
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8			
PCB 28	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8			
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8			
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8			
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8			
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8			
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8			
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35		<35	ug/kg	TM17/PM8			

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : Solid

JE Job No.:	18/17300											
J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84]		
Sample ID	TP11	TP11	TP12	TP12	TP13	TP13	TP14	TP14				
Depth	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50		Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number		1	1	1	1	1	1	1				Martine
Date of Receipt	26/10/2018	26/10/2018								LOD/LOR	Units	Method No.
Natural Moisture Content	8.4	8.7	11.5	<0.1	7.0	8.0	19.8	45.9		<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	7.7	8.0	10.3	<0.1	6.5	7.4	16.5	31.4		<0.1	%	PM4/PM0
Hexavalent Chromium [#]	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3		<0.3	mg/kg	TM38/PM20 TM38/PM20
Sulphate as SO4 (2:1 Ext) [#] Chromium III	- 66.6	- 66.6	0.0284 31.1	- 42.6	- 91.8	- 113.9	- 189.6	- 43.0		<0.0015 <0.5	g/l mg/kg	NONE/NONE
	23.0	23.0										
Total Organic Carbon [#]	0.20	0.25	0.54	0.45	0.31	0.19	2.03	4.79		<0.02	%	TM21/PM24
рН *	6.05	7.76	7.93	8.33	7.98	7.95	7.31	7.53		<0.01	pH units	TM73/PM11
Mass of raw test portion	0.0966	0.0979	0.1008	0.0973	0.1003	0.0978	0.1061	0.1406			kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09			kg	NONE/PM17
			l				I				l	I

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : CEN 10:1 1 Batch

JE Job No.:	18/17300										_		
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018	24/10/2018			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			
											LOD/LOR	Units	Method No.
Date of Receipt		26/10/2018			26/10/2018				26/10/2018		0.000		TM00/DM47
Dissolved Antimony [#]	<0.002 <0.02	0.003	<0.002 <0.02	mg/l	TM30/PM17 TM30/PM17								
Dissolved Antimony (A10) * Dissolved Arsenic *	<0.02	<0.0025	<0.02	0.0028	<0.02	<0.02	0.0026	<0.02	<0.02	0.0025	<0.02	mg/kg mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025	0.028	<0.025	<0.025	0.026	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	0.004	0.006	0.010	0.003	0.008	0.008	0.005	0.005	0.022	0.009	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.04	0.06	0.10	0.03	0.08	0.08	0.05	0.05	0.22	0.09	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	0.031	0.008	0.014	0.013	<0.007	0.024	0.013	<0.007	0.015	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	0.31	0.08	0.14	0.13	<0.07	0.24	0.13	<0.07	0.15	<0.07	mg/kg	TM30/PM17
Dissolved Lead [#]	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	mg/l	TM30/PM17
Dissolved Lead (A10) *	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05 0.008	< 0.05	< 0.05	<0.05	<0.05 <0.002	mg/kg	TM30/PM17 TM30/PM17
Dissolved Molybdenum [#] Dissolved Molybdenum (A10) [#]	0.005	<0.002 <0.02	0.004	0.005	<0.002 <0.02	<0.002 <0.02	0.008	0.009	0.019	0.015 0.15	<0.02	mg/l mg/kg	TM30/PM17 TM30/PM17
Dissolved Nickel [#]	<0.002	<0.02	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	0.006	<0.003	<0.003	0.005	<0.003	0.004	<0.003	0.003	0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	0.06	<0.03	<0.03	0.05	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	<0.05	<0.05	<0.05	<0.05	<0.05	3.22	<0.05	4.57	22.30	38.12	<0.05	mg/l	TM38/PM0
Sulphate as SO4 #	<0.5	<0.5	<0.5	<0.5	<0.5	32.2	<0.5	45.7	223.0	381.1	<0.5	mg/kg	TM38/PM0
Chloride [#]	0.9	1.9	2.0	0.7	4.6	0.6	2.8	0.4	2.1	3.1	<0.3	mg/l	TM38/PM0
Chloride #	9	19	20	7	46	6	28	4	21	31	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	9	40	19	15	41	11	35	9	14	32	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	90	400	190	150	410	110	350	90	140	320	<20	mg/kg	TM60/PM0
рН	8.16	5.96	8.28	7.98	6.38	5.66	7.24	7.92	8.15	7.67	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	118	113	221	128	125	65	175	162	184	147	<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	1180	1130	2209	1280	1251	650	1749	1619	1840	1470	<350	mg/kg	TM20/PM0

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : CEN 10:1 1 Batch

JE Job No.:	18/17300												
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55,57,59	56,58,60			
Sample ID	TP06	TP06	TP07	TP07	TP08	TP08	TP09	TP09	TP10	TP10			
Depth	0.50	2.00	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	Diagon on	o otto oh o d n	otoo for all
COC No / misc												e attached n ations and a	
Containers	VJT												
Sample Date			24/10/2018			23/10/2018			23/10/2018	23/10/2018			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018			No.
Dissolved Antimony [#]	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	0.010	<0.003	<0.003	<0.003	<0.003	<0.003	0.006	0.005	0.012	0.014	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) *	0.10 <0.0005	<0.03 <0.0005	<0.03 <0.0005	<0.03 <0.0005	<0.03 <0.0005	<0.03 <0.0005	0.06 <0.0005	0.05	0.12 <0.0005	0.14	<0.03 <0.0005	mg/kg	TM30/PM17 TM30/PM17
Dissolved Cadmium [#] Dissolved Cadmium (A10) [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l mg/kg	TM30/PM17 TM30/PM17
Dissolved Cadmium (A10)	<0.0015	<0.0015	<0.0015	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17 TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	0.018	<0.007	<0.007	<0.007	<0.007	0.010	0.034	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	0.18	<0.07	<0.07	<0.07	<0.07	0.10	0.34	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.006	<0.002	0.004	0.004	0.009	0.007	<0.002	0.020	0.013	0.015	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.06	<0.02	0.04	0.04	0.09	0.07	<0.02	0.20	0.13	0.15	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	0.004	0.005	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	0.007	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)*	0.04	0.05	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.07	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF * Mercury Dissolved by CVAF *	<0.00001 <0.0001	mg/l mg/kg	TM61/PM0 TM61/PM0										
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
	50.1	50.1	50.1	50.1	50.1	20.1	40.1	50.1	50.1	50.1	40.1	ing/ig	11120/11110
Fluoride	<0.3	<0.3	<0.3	0.3	0.4	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	3	4	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	<0.05	4.71	0.25	0.08	0.30	0.15	0.57	<0.05	13.70	28.69	<0.05	mg/l	TM38/PM0
Sulphate as SO4 [#]	<0.5	47.1	2.5	0.8	3.0	1.5	5.7	<0.5	137.1	286.9	<0.5	mg/kg	TM38/PM0
Chloride [#]	2.6	0.9	<0.3	<0.3	<0.3	0.6	1.4	2.0	1.2	2.4	<0.3	mg/l	TM38/PM0
Chloride [#]	26	9	<3	<3	<3	6	14	20	12	24	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	16	5	6	7	5	9	13	26	32	25	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	160	50	60	70	50	90	130	260	320	250	<20	mg/kg	TM60/PM0
рН	8.02	7.82	8.05	8.07	8.12	8.19	7.28	7.49	8.16	7.74	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	132	41	61	86	97	103	60	77	192	164	<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	1319	410	610	860	970	1030	600	770	1921	1640	<350	mg/kg	TM20/PM0

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8165-10-18 Gateway Barry Sexton 18/17300

Report : CEN 10:1 1 Batch

JE Job No.:	18/17300									_		
J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84				
Sample ID	TP11	TP11	TP12	TP12	TP13	TP13	TP14	TP14				
Depth	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50		Disease		
COC No / misc											e attached n ations and a	
Containers	VJT											
Sample Date	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018	23/10/2018				
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018		LOBILON	onno	No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	<0.003	<0.003	0.005	<0.003	0.003	<0.003	0.009	0.009		<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	<0.03	<0.03	0.05	<0.03	0.03	<0.03	0.09	0.09		<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005		<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) # Dissolved Chromium #	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005		< 0.005	mg/kg	TM30/PM17 TM30/PM17
Dissolved Chromium *	<0.0015 <0.015		<0.0015 <0.015	mg/l mg/kg	TM30/PM17 TM30/PM17							
Dissolved Copper [#]	0.013	0.007	<0.007	<0.013	<0.013	<0.013	0.009	<0.007		<0.013	mg/l	TM30/PM17
Dissolved Copper (A10) #	0.14	<0.07	<0.07	<0.07	<0.07	<0.07	0.000	<0.07		<0.07	mg/kg	TM30/PM17
Dissolved Lead [#]	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	<0.002	0.010	0.003	0.002	0.012	0.005	0.012	0.015		<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	<0.02	0.10	0.03	0.02	0.12	0.05	0.12	0.15		<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	0.003	<0.003	<0.003	0.004	<0.003	<0.003	0.004	0.004		<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	0.03	<0.03	<0.03	0.04	<0.03	<0.03	0.04	0.04		<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001		<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	0.3	<0.3	<0.3	<0.3		<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	3	<3	<3	<3		<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	0.64	<0.05	10.60	0.35	13.10	5.85	<0.05	23.77		<0.05	mg/l	TM38/PM0
Sulphate as SO4 #	6.4	<0.5	106.0	3.5	131.1	58.5	<0.5	237.7		<0.5	mg/kg	TM38/PM0
Chloride [#]	<0.3	0.3	<0.3	<0.3	<0.3	<0.3	1.1	1.3		<0.3	mg/l	TM38/PM0
Chloride [#]	<3	<3	<3	<3	<3	<3	11	13		<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	3	15	6	4	4	7	18	16		<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	150	60	40	40	70	180	160		<20	mg/kg	TM60/PM0
pН	7.92	7.98	8.00	7.96	7.94	7.97	7.05	8.12		<0.01	pH units	TM73/PM0
Total Dissolved Solids [#]	<35	154	97	54	119	95	134	215		<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	<350	1540	970	540	1191	950	1339	2150		<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland Reference: 8165-10-18 Location: Gateway Contact: Barry Sexton JE Job No.: 18/17300

Report : EN12457_2

JE JOD NO.:	18/17300															
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30						
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05						
Depth	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50				Ploaso so	e attached n	otos for all
COC No / misc															ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
		24/10/2018				24/10/2018	24/10/2018									
-																
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018		reactive				NO.
Solid Waste Analysis																
Total Organic Carbon #	3.60	10.03	4.19	0.62	21.04	3.59	16.28	0.17	17.83	29.57	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025 ^{sv} <0.035	<0.025 ^{sv} <0.035	<0.025 ^{sv} <0.035	<0.025 <0.035	<0.025 ^{sv} <0.350 _{BB}	<0.025 ^{sv}	<0.025 ^{sv} <0.035	<0.025	<0.025 ^{sv} <0.035	<0.025 ^{sv} <0.035	6	-	-	<0.025 <0.035	mg/kg	TM31/PM12 TM17/PM8
Sum of 7 PCBs [#] Mineral Oil	<0.035	<0.035	<0.035	<0.035	<0.350 _{BB}	<0.035 <30	<0.035	<0.035	<0.035	<0.035	500	-	-	<0.035	mg/kg mg/kg	TMT7/PW8 TM5/PM8/PM16
PAH Sum of 6	<0.44 _{BA}	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<1.28 _{BA}	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic "	<0.025	<0.025	<0.025	0.028	<0.025	<0.025	0.026	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium "	0.04	0.06	0.10	0.03	0.08	0.08	0.05	0.05	0.22	0.09	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium "	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium "	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper [#]	<0.07 <0.0001	0.31	0.08	0.14	0.13 <0.0001	<0.07 <0.0001	0.24 <0.0001	0.13 <0.0001	<0.07 <0.0001	0.15 <0.0001	2	50 0.2	100 2	<0.07 <0.0001	mg/kg mg/kg	TM30/PM17 TM61/PM0
Mercury " Molybdenum "	0.05	<0.001	0.04	0.05	<0.001	<0.001	0.08	0.09	0.19	0.15	0.01	10	30	<0.001	mg/kg	TM30/PM17
Nickel [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead"	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium "	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc "	<0.03	0.06	<0.03	<0.03	0.05	<0.03	0.04	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	1180	1130	2209	1280	1251	650	1749	1619	1840	1470	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	90	400	190	150	410	110	350	90	140	320	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1132	0.171	0.1358	0.1005	0.1959	0.1144	0.1582	0.1022	0.1894	0.2135	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	79.5	52.8	66.3	89.8	46.0	79.0	56.7	87.8	47.4	42.1	-	-	-	<0.1	×9 %	NONE/PM1/
Leachant Volume	0.877	0.82	0.854	0.89	0.795	0.876	0.831	0.887	0.8	0.776	-	-	-		1	NONE/PM17
Eluate Volume	0.8	0.65	0.82	0.78	0.8	0.82	0.7	0.82	0.85	0.95	-	-	-		I	NONE/PM17
рН "	7.44	4.96	7.58	7.15	5.11	4.58	5.72	7.94	7.39	6.06	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	<0.5	<0.5	<0.5	<0.5	<0.5	32.2	<0.5	45.7	223.0	381.1	1000	20000	50000	<0.5	mg/kg	TM38/PM0
Chloride "	9	19	20	7	46	6	28	4	21	31	800	15000	25000	<3	mg/kg	TM38/PM0

Client Name: Ground Investigations Ireland Reference: 8165-10-18 Location: Gateway Contact: Barry Sexton JE Job No.: 18/17300

Report : EN12457_2

JE JOD NO.:	18/17300															
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55,57,59	56,58,60						
Sample ID	TP06	TP06	TP07	TP07	TP08	TP08	TP09	TP09	TP10	TP10						
Depth	0.50	2.00	0.50	1.50	0.50	1.50	0.50	1.50	0.50	1.50				Diagon on	o ottoohod n	atoo for all
COC No / misc															e attached n ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date			24/10/2018		23/10/2018		23/10/2018	23/10/2018	23/10/2018							
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1	Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018		reactive				No.
Solid Waste Analysis																
Total Organic Carbon #	8.02	0.08	1.47	2.59	1.52	2.30	4.52	2.50	2.67	22.72	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025 ^{sv}	<0.025	<0.025	<0.025 ^{sv}	< 0.025	<0.025 ^{\$V}	<0.025 ^{sv}	<0.025 ^{sv}	<0.025	0.163 ^{sv}	6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs [#] Mineral Oil	<0.035 331	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035 <30	<0.035 <30	1	-	-	<0.035	mg/kg	TM17/PM8 TM5/PM8/PM16
PAH Sum of 6	<2.20 _{BB}	<30 <0.22	<30 <0.22	<30 <0.22	<30 <0.22	<30 <0.22	<30 <2.20 _{BB}	<30 <0.22	<30 0.48	<0.22	500	-	-	<30 <0.22	mg/kg mg/kg	TM4/PM8
PAH Sum of 17	<6.40 _{BB}	<0.64	<0.64	<0.64	<0.64	<0.64	<6.40 _{BB}	<0.64	1.17	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
	- 55	-	-	-		-	- 55	-		-				-	5.5	
CEN 10:1 Leachate																
Arsenic #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.10	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	0.05	0.12	0.14	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium "	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper"	<0.07	0.18	<0.07	<0.07	<0.07	<0.07	0.10	0.34	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17 TM61/PM0
Mercury # Molybdenum #	<0.0001	<0.0001 <0.02	<0.0001 0.04	<0.0001 0.04	<0.0001 0.09	<0.0001 0.07	<0.0001 <0.02	<0.0001 0.20	<0.0001 0.13	<0.0001 0.15	0.01	0.2	2 30	<0.0001 <0.02	mg/kg mg/kg	TM30/PM17
Nickel [#]	<0.02	<0.02	<0.04	<0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead"	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc #	0.04	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.07	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	1319	410	610	860	970	1030	600	770	1921	1640	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	160	50	60	70	50	90	130	260	320	250	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1305	0.104	0.1043	0.1165	0.1043	0.1143	0.12	0.1504	0.1123	0.1262	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	68.9	86.1	86.5	77.4	86.1	78.8	75.3	59.9	80.0	71.5	-	-	-	<0.1	ky %	NONE/PM1/
Leachant Volume	0.859	0.885	0.886	0.874	0.885	0.876	0.87	0.84	0.878	0.864	-	-	-		1	NONE/PM17
Eluate Volume	0.85	0.86	0.75	0.8	0.8	0.77	0.76	0.75	0.8	0.834	-	-	-		I	NONE/PM17
рН "	7.35	7.94	8.01	7.99	8.04	7.55	5.83	6.53	7.41	6.86	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	3	4	<3	<3	<3	<3	<3	-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	<0.5	47.1	2.5	0.8	3.0	1.5	5.7	<0.5	137.1	286.9	1000	20000	50000	<0.5	mg/kg	TM38/PM0
Chloride #	26	9	<3	<3	<3	6	14	20	12	24	800	15000	25000	<3	mg/kg	TM38/PM0

Client Name: Ground Investigations Ireland Reference: 8165-10-18 Location: Gateway Contact: Barry Sexton JE Job No.: 18/17300

Report : EN12457_2

JE Job No.:	18/17300														
J E Sample No.	61-63	64-66	67-69	70-72	73-75	76-78	79-81	82-84							
Sample ID	TP11	TP11	TP12	TP12	TP13	TP13	TP14	TP14							
Depth	1.50	0.50	1.50	0.50	1.50	0.50	1.50	0.50					Discos os	o ottoobod r	otoo for all
COC No / misc														e attached n ations and a	
Containers	VJT														
Sample Date		23/10/2018			23/10/2018	23/10/2018	23/10/2018	23/10/2018							
Sample Type	Soil														
Batch Number	1	1	1	1	1	1	1	1							
										Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt Solid Waste Analysis	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018	26/10/2018							
Total Organic Carbon #	0.20	0.25	0.54	0.45	0.31	0.19	2.03	4.79		3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025 ^{sv}		6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	< 0.035		1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30		500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22		-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64		100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		0.5	2	25	<0.025	mg/kg	TM30/PM17
Arsenic Barium #	<0.023	<0.023	0.05	<0.023	0.023	<0.023	0.025	0.023		20	100	300	<0.023	mg/kg	TM30/PM17
Cadmium "	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium "	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper "	0.14	<0.07	<0.07	<0.07	<0.07	<0.07	0.09	<0.07		2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	<0.02	0.10	0.03	0.02	0.12	0.05	0.12	0.15		0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel "	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead"	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony# Selenium#	<0.02 <0.03		0.06	0.7	5	<0.02 <0.03	mg/kg mg/kg	TM30/PM17 TM30/PM17							
Zinc"	0.03	<0.03	<0.03	0.04	<0.03	<0.03	0.04	0.04		4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids	<350	1540	970	540	1191	950	1339	2150		4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	150	60	40	40	70	180	160		500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.0966	0.0979	0.1008	0.0973	0.1003	0.0978	0.1061	0.1406		-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	93.7	91.9	89.7	92.8	89.6	92.2	84.5	63.9		-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.894	0.892	0.89	0.893	0.89	0.892	0.883	0.849		-	-	-		1	NONE/PM17
Eluate Volume	0.854	0.8	0.853	0.85	0.8	0.8	0.8	0.8		-	-	-		I	NONE/PM17
рН "	6.05	7.76	7.93	8.33	7.98	7.95	7.31	7.53		-	-	-	<0.01	pH units	TM73/PM11
þri	0.00	1.10	1.00	0.00	1.00	1.00	1.01	1.00					40.01	prirania	
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	3	<3	<3	<3		-	-	-	<3	mg/kg	TM173/PM0
	6.4	0.5	400.0	3.5	131.1	50.5	0.5	007.7		1000	20000	50000	0.5		TM38/PM0
Sulphate as SO4 # Chloride #	<3	<0.5	106.0 <3	3.5 <3	<3	58.5 <3	<0.5	237.7 13		800	15000	25000	<0.5 <3	mg/kg mg/kg	TM38/PM0 TM38/PM0
Chionde	23	23	23	<5	23	<5		15		000	13000	23000	(3	ilig/kg	TWOOF WO

			^	
11/1	2tr	'IV	50	110
171	au	1.	So	IIU.

Client Name:	Ground Investigations Ireland
Reference:	8165-10-18
Location:	Gateway
Contact:	Barry Sexton

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
18/17300	1	TP01	0.50	1-3	No interpretation possible
18/17300	1	TP01	1.50	4-6	Naturally occurring compounds & Possible PAH's
18/17300	1	TP02	0.50	7-9	No interpretation possible
18/17300	1	TP02	1.50	10-12	No interpretation possible
18/17300	1	TP03	0.50	13-15	Naturally occurring compounds & Possible PAH's
18/17300	1	TP03	1.50	16-18	No interpretation possible
18/17300	1	TP04	0.50	19-21	Naturally occurring compounds
18/17300	1	TP04	1.50	22-24	No interpretation possible
18/17300	1	TP05	0.50	25-27	Naturally occurring compounds & Possible PAH's
18/17300	1	TP05	1.50	28-30	Naturally occurring compounds & Possible PAH's
18/17300	1	TP06	0.50	31-33	Tarmac/bitumen & Possible lubricating oil
18/17300	1	TP06	2.00	34-36	No interpretation possible
18/17300	1	TP07	0.50	37-39	No interpretation possible
18/17300	1	TP07	1.50	40-42	No interpretation possible
18/17300	1	TP08	0.50	43-45	No interpretation possible
18/17300	1	TP08	1.50	46-48	No interpretation possible
18/17300	1	TP09	0.50	49-51	Naturally occurring compounds & Possible PAH's
18/17300	1	TP09	1.50	52-54	Naturally occurring compounds
18/17300	1	TP10	0.50	55,57,59	Naturally occurring compounds
18/17300	1	TP10	1.50	56,58,60	Naturally occurring compounds & Possible PAH's
18/17300	1	TP11	1.50	61-63	No interpretation possible
18/17300	1	TP11	0.50	64-66	No interpretation possible
18/17300	1	TP12	1.50	67-69	No interpretation possible
18/17300	1	TP12	0.50	70-72	No interpretation possible
18/17300	1	TP13	1.50	73-75	No interpretation possible
18/17300	1	TP13	0.50	76-78	No interpretation possible
18/17300	1	TP14	1.50	79-81	No interpretation possible
18/17300	1	TP14	0.50	82-84	Naturally occurring compounds

Client Name: Reference:	Ground Investigations Ireland 18/10/8165
Location:	Gateway
Contact:	Barry Sexton

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

JE				JE	Date Of		
Job No.	Batch	Sample ID	Depth	Sample No.	Analysis	Analysis	Result
18/17300	1	TP01	0.50	2	01/11/2018	General Description (Bulk Analysis)	soil/stones
10/17000			0.00	-	01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
					01/11/2010		
18/17300	1	TP01	1.50	5	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP02	0.50	8	01/11/2018	General Description (Bulk Analysis)	soil.stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP02	1.50	11	01/11/2018	General Description (Bulk Analysis)	soil/stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP03	0.50	14	01/11/2018	General Description (Bulk Analysis)	soil.stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP03	1.50	17	01/11/2018	General Description (Bulk Analysis)	soil/stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP04	0.50	20	01/11/2018	General Description (Bulk Analysis)	Soil/Stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD

Jones Environmental Laboratory

Client Name:
Reference:
Location:
Contact

Ground Investigations Ireland 18/10/8165 Gateway

Contact	Contact:		Barry Se	xton			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/17300	1	TP04	0.50	20	01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP04	1.50	23	01/11/2018	General Description (Bulk Analysis)	Soil/Stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP05	0.50	26	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP05	1.50	29	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP06	0.50	32	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP06	2.00	35	01/11/2018	General Description (Bulk Analysis)	soil.stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP07	0.50	38	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP07	1.50	41	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP08	0.50	44	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP08	1.50	47	01/11/2018	General Description (Bulk Analysis)	Soil/Stones
,					01/11/2018	Asbestos Fibres	NAD

Jones Environmental Laboratory

Client Name:
Reference:
Location:
Contact:

Ground Investigations Ireland 18/10/8165 Gateway Barry Sexton

Contact			Barry Sea	xton			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/17300	1	TP08	1.50	47	01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP09	0.50	50	01/11/2018	General Description (Bulk Analysis)	soil.stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP09	1.50	53	01/11/2018	General Description (Bulk Analysis)	soil/stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP10	0.50	57	01/11/2018	General Description (Bulk Analysis)	soil/stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP10	1.50	58	01/11/2018	General Description (Bulk Analysis)	soil.stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
					011112010		
18/17300	1	TP11	1.50	62	01/11/2018	General Description (Bulk Analysis)	soil-stones
10,11000				02	01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
					01/11/2018	Asbestos Level Screen	
18/17300	1	TP11	0.50	65	01/11/2019	General Description (Bulk Analysis)	Soil/Stones
10/17/000	1		0.50	05		Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
40/47000	4	TD40	4.50		04/44/0040	Constal Description (Duilt Aught 1)	Call/Change
18/17300	1	TP12	1.50	68	01/11/2018	General Description (Bulk Analysis)	Soil/Stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP12	0.50	71	01/11/2018	General Description (Bulk Analysis)	Soil/Stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD

Jones Environmental Laboratory

Client Name:
Reference:
Location:
Contact:

Ground Investigations Ireland 18/10/8165 Gateway Barry Sexton

Contact	:	Barry Sexton					
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/17300	1	TP13	1.50	74	01/11/2018	General Description (Bulk Analysis)	soil/stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP13	0.50	77	01/11/2018	General Description (Bulk Analysis)	soil/stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP14	1.50	80	01/11/2018	General Description (Bulk Analysis)	soil-stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
18/17300	1	TP14	0.50	83	01/11/2018	General Description (Bulk Analysis)	soil.stones
					01/11/2018	Asbestos Fibres	NAD
					01/11/2018	Asbestos ACM	NAD
					01/11/2018	Asbestos Type	NAD
					01/11/2018	Asbestos Level Screen	NAD
							l.

Client Name:Ground Investigations IrelandReference:8165-10-18Location:Gateway

Contact: Barry Sexton

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/17300

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x2 Dilution
AB	x10 Dilution
BA	x2 Dilution
BB	x10 Dilution

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.: 18/17300

Leachate tests	
10l/kg; 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ba	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional	analysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
Dry matter	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-Fischer titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range

*If not suitable due to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS **PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AR	Yes
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Appendix B

PERMISSIBLE OUTFLOW CALCULATIONS

SUBJECT	Knocknacarra, Galway culations Allowable Outflow Calculations by FNS	Checked by NCG			JOB REF. p180191 Calc. Sheet No. 1 Date 11-Apr-19		H	L
Site Area	SURFACE WATER DISCHA	RGE CALCULATIONS	1.93 (Area of site	Hectares (ha) within catchme	Site is Less than 5 nt of new draina			
			excludes ope	en space areas	not within new o	drainage	networks)	
	catchment Soil Characteristics soil types present on the pre-de	aveloned site?	No	1				
Are there different		-	1.93	1		SOIL	SOIL Value	SPR
	Area	This refers to the entire site area	1.93	Hectares (ha)		1	0.15	0.10
	Drainage Group		2	Class		2	0.30	0.30
	Depth to Impermeable Layers		2	Class		3	0.40	0.37
	Permeability Group above Imper	meable Layers	3	Class		4	0.45	0.47
	Slope ^(o)		1	Class		5	0.50	0.53
	SOIL Type		3	From FSR Table				
	¹ SOIL Index		0.40	J				
Site SOIL Index Va	alue		0.40]				
Site SPR Value			0.37]				
Post-Developmen	t Catchment Characteristics							
Is the development	t divided into sub-catchments?		Yes]				
How many sub-cat	chments?		2]				
Permissible Site I	<u>Discharge</u>							
What is the Standa	ard Average Annual Rainfall (SA	AR)?	1247.0	mm				
Is the overall site a	area less than 50 hectares?		Yes]				
⁵ QBAR _{Rural} calcula	ated for 50 ha and linearly inter	polated for area of site	13.00	Litres/sec				
⁷ Site Discharge =			13.00	Litres/sec				

Notes and Formulae

1. SOIL index value calculated from Flood Studies Report - The Classification of Soils from Winter Rainfall Acceptance Rate (Table 4.5).

2. SPR value calculated from GDSDS - Table 6.7.

3. Rainfall depth for 100 year return period, 6 hour duration with additional 10% for climate change.

4. Long-term storage Vol_{xs} (m³) = Rainfall.Area.10.[(PIMP/100)(0.8. α)+(1-PIMP/100)(β .SPR)-SPR]. (GDSDS Section 6.7.3).

Where long-term storage cannot be provided on-site due to ground conditions, Total Permissible Outflow is to be kept to QBAR (Rural).

5. Total Permissible Outflow - QBAR $_{(Rural)}$ calculated in accordance with GDSDS - Regional Drainage Policies

(Volume 2 - Chapter 6), i.e. QBAR(m3/s)=0.00108x(Area)^{0.89}(SAAR)^{1.17}(SOIL)^{2.17} - For catchments greater than 50 hectares in area. Flow rates are linearly interpolated for areas samller than 50 hectares.

6. Where Total Permissible Outflow is less than 2.0l/s and not achievable, use 2.0 l/s or closest value possible.

7. QBAR multiplied by growth factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figure C2.

Appendix C

ATTENUATION CALCULATIONS

DBFL Consulting Engineers					
Ormond House	180191				
Upper Ormond Quay	Knocknacarra District				
Dublin 7	Site 1 Attenuation	Micro			
Date 24/09/2019	Designed by FNS	Drainage			
File 180191- Southern	Checked by NCG	Diamacje			
Innovyze	Source Control 2018.1				

<u>Summary of Results</u>	for 1	<u>00 ye</u>	ar Retu	irn Pei	riod (+10%)
Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)		Status
15 min Summer	27.127	0.387	8.0	132.7	ОК
30 min Summer	27.272	0.532	8.4	182.6	ОК
60 min Summer	27.415	0.675	8.7	231.4	O K
120 min Summer	27.541	0.801	9.0	274.7	O K
180 min Summer	27.595	0.855	9.1	293.3	O K
240 min Summer	27.618	0.878	9.2	301.3	O K
360 min Summer	27.625	0.885	9.2	303.6	O K
480 min Summer	27.621	0.881	9.2	302.3	O K
600 min Summer	27.616	0.876	9.2	300.4	O K
720 min Summer	27.609	0.869	9.2	297.9	O K
960 min Summer	27.589	0.849	9.1	291.3	O K
1440 min Summer	27.539	0.799	9.0	273.9	O K
2160 min Summer	27.449	0.709	8.8	243.3	O K
2880 min Summer	27.358	0.618	8.6	212.0	O K
4320 min Summer	27.190	0.450	8.2	154.5	O K
5760 min Summer	27.053	0.313	7.8	107.3	O K
7200 min Summer	26.944	0.204	7.6	70.0	O K
8640 min Summer	26.860	0.120	7.4	41.2	O K
10080 min Summer	26.798	0.058	7.4	19.7	O K
15 min Winter	27.177	0.437	8.2	149.8	O K
30 min Winter	27.343	0.603	8.6	206.8	0 K

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
			75.304		142.3		
			52.677				
			34.650		262.6		
120	min	Summer	22.092	0.0	334.6	124	
180	min	Summer	16.829	0.0	382.6	182	
240	min	Summer	13.848	0.0	419.1	240	
360	min	Summer	10.488	0.0	476.9	306	
480	min	Summer	8.600	0.0	520.6	372	
600	min	Summer	7.368	0.0	558.0	436	
720	min	Summer	6.491	0.0	589.7	506	
960	min	Summer	5.314	0.0	643.7	646	
1440	min	Summer	4.007	0.0	728.6	924	
2160	min	Summer	3.019	0.0	823.8	1324	
2880	min	Summer	2.466	0.0	896.3	1728	
4320	min	Summer	1.853	0.0	1010.1	2472	
5760	min	Summer	1.511	0.0	1097.8	3224	
7200	min	Summer	1.290	0.0	1172.9	3896	
8640	min	Summer	1.133	0.0	1236.6	4584	
10080	min	Summer	1.016	0.0	1292.9	5248	
15	min	Winter	75.304	0.0	159.7	22	
30	min	Winter	52.677	0.0	223.1	36	
		©1	982-201	18 Innc	ovyze		

	Page 2
180191	
Knocknacarra District	
Site 1 Attenuation	Micro
Designed by FNS	Drainage
Checked by NCG	Diamage
Source Control 2018.1	1
	Knocknacarra District Site 1 Attenuation Designed by FNS Checked by NCG

Summary of Results for 100 year Return Period (+10%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	27.507	0.767	8.9	263.2	ΟK
120	min	Winter	27.660	0.920	9.3	315.7	ΟK
180	min	Winter	27.733	0.993	9.4	340.5	ΟK
240	min	Winter	27.770	1.030	9.5	353.3	ΟK
360	min	Winter	27.792	1.052	9.6	360.8	O K
480	min	Winter	27.784	1.044	9.6	358.0	ΟK
600	min	Winter	27.770	1.030	9.5	353.1	ΟK
720	min	Winter	27.754	1.014	9.5	347.7	ΟK
960	min	Winter	27.719	0.979	9.4	335.8	ΟK
1440	min	Winter	27.628	0.888	9.2	304.7	ΟK
2160	min	Winter	27.479	0.739	8.9	253.3	ΟK
2880	min	Winter	27.335	0.595	8.5	204.0	ΟK
4320	min	Winter	27.089	0.349	7.9	119.9	ΟK
5760	min	Winter	26.902	0.162	7.4	55.7	ОК
7200	min	Winter	26.764	0.024	7.4	8.1	ΟK
8640	min	Winter	26.740	0.000	6.8	0.0	ΟK
10080	min	Winter	26.740	0.000	6.1	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak
	Event	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
				000 5	<i></i>
	min Winter		0.0	293.5	64
120	min Winter	22.092	0.0	374.5	122
180	min Winter	16.829	0.0	427.9	178
240	min Winter	13.848	0.0	470.1	234
360	min Winter	10.488	0.0	534.1	342
480	min Winter	8.600	0.0	583.5	390
600	min Winter	7.368	0.0	624.8	466
720	min Winter	6.491	0.0	660.4	546
960	min Winter	5.314	0.0	720.9	700
1440	min Winter	4.007	0.0	815.4	1000
2160	min Winter	3.019	0.0	922.2	1428
2880	min Winter	2.466	0.0	1004.5	1844
4320	min Winter	1.853	0.0	1132.0	2596
5760	min Winter	1.511	0.0	1230.9	3288
7200	min Winter	1.290	0.0	1313.0	3896
8640	min Winter	1.133	0.0	1384.5	0
10080	min Winter	1.016	0.0	1447.8	0

©1982-2018 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House	180191	
Upper Ormond Quay	Knocknacarra District	
Dublin 7	Site 1 Attenuation	Mirro
Date 24/09/2019	Designed by FNS	Drainage
File 180191- Southern	Checked by NCG	Diginada
Innovyze	Source Control 2018.1	1

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	16.000	Shortest Storm (mins)	15
Ratio R	0.261	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change 🖇	+10

<u>Time Area Diagram</u>

Total Area (ha) 1.010

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.505	4	8	0.505

DBFL Consulting Er	Igineer	. 5						Pag	je 4	
Ormond House	mond House 180191									
pper Ormond Quay Knocknaca				arra D	istrict					
Dublin 7 Site 1 At					tenua	tion		N / I	CCC	
Date 24/09/2019			Des	igned	bv FN	S			cio	
File 180191- South	lern			cked k	-				ain	aqı
· · ·					-	2018.1				
Innovyze			500	ice co	JILLOI	2010.1				
			<u>Mode</u>	l Deta	<u>ils</u>					
	Stor	rage i	s Online	Cover	Level (i	m) 28.800				
		<u>Ta</u>	nk or E	ond St	tructu	re				
		-	Invert Le	evel (m)	26.740)				
Depth (m) Area ((m²) Dep	th (m)	Area (m	1²) Dept	:h (m) 1	Area (m²)	Depth (m)	Area	(m²)	
	13.0	0.700			1.400	0.0	2.100		0.0	
	3.0	0.800			1.500		2.200		0.0	
			343		1.600		2.300		0.0	
0.300 34 0.400 34		1.000) 343) 343		1.700 1.800		2.400 2.500		0.0	
		1.200			1.900		2.500		0.0	
		1.300			2.000					
	I	_		I		I	-			
	<u>Hydrc</u>	<u>-Bra</u>	<u>ke® Opt</u>	<u>imum (</u>	<u>Jutilo</u>	w Contro	<u> </u>			
			Unit Ref esign He		MD-SHE-	0126-9600-	2150-9600 2.150			
			ign Flow				9.6			
			Flus	h-Flo™		С	alculated			
			Obj	ective	Minimi	se upstrea	-			
				cation			Surface			
			Sump Ava				Yes			
		T	Diamete				126			
Minim			vert Lev Diamete	. ,			25.650 150			
		-	Diamete				1500			
Control Points	Hea	d (m)	Flow (1/	s)	Contr	ol Points	Head	(m) E	'low	(1/s
Design Point (Calculat Flush-F	lo™			0.6 0.0 Mear	n Flow c	Kick- Ver Head B		.122		7. 8.
The hydrological cal Hydro-Brake® Optimum							-	-		
Hydro-Brake Optimum® invalidated	-									
Depth (m) Flow (1/	's) Dept	h (m)	Flow (1/	's) Dept	:h (m) 1	Flow (l/s)	Depth (m)	Flow	(1/s	;)
		1.200		.3	3.000	11.2	7.000		16.	
		1.400		.8	3.500	12.1			17.	
		1.600		.3	4.000	12.9			17.	
		1.800		.8	4.500	13.6			18.	
		2.000		9.3	5.000	14.3			19.	
		2.200		9.7	5.500	15.0	9.500		19.	5
		2.400		0.1	6.000 6.500	15.6 16.2				
1.000			ŦŰ			+0.2	I			

DBFL Consulting Engineers		Page 1
Ormond House	180191	
Upper Ormond Quay	Knocknacarra District	
Dublin 7	Site 2 Attenuation	Micro
Date 24/09/2019	Designed by FNS	Drainage
File 180191- Norther	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

Summary of Results	for 1	<u>00 ye</u>	ar Retu	irn Pei	riod (+10%)
Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15 min Summer	28.160	0.310	3.4	59.3	ΟK
30 min Summer	28.279	0.429	3.4	81.9	O K
60 min Summer	28.399	0.549	3.4	104.9	ОК
120 min Summer	28.511	0.661	3.4	126.2	O K
180 min Summer	28.564	0.714	3.4	136.3	O K
240 min Summer	28.592	0.742	3.4	141.7	O K
360 min Summer	28.609	0.759	3.4	145.0	O K
480 min Summer	28.607	0.757	3.4	144.5	O K
600 min Summer	28.604	0.754	3.4	143.9	O K
720 min Summer	28.600	0.750	3.4	143.2	O K
960 min Summer	28.589	0.739	3.4	141.1	O K
1440 min Summer	28.558	0.708	3.4	135.3	O K
2160 min Summer	28.498	0.648	3.4	123.8	O K
2880 min Summer	28.427	0.577	3.4	110.2	O K
4320 min Summer	28.250	0.400	3.4	76.4	O K
5760 min Summer	28.115	0.265	3.4	50.7	O K
7200 min Summer	28.019	0.169	3.4	32.3	O K
8640 min Summer	27.953	0.103	3.3	19.7	O K
10080 min Summer	27.909	0.059	3.2	11.3	O K
15 min Winter	28.201	0.351	3.4	67.0	O K
30 min Winter	28.336	0.486	3.4	92.9	0 K

Storm	Rain	Flooded	Discharge	Time-Peak	
Event	(mm/hr)	Volume	Volume	(mins)	
		(m³)	(m³)		
		0.0	60 A	2.2	
15 min Summer	75.304		63.4	22	
	52.677		88.9	36	
60 min Summer			116.7	66	
120 min Summer	22.092	0.0	149.0	124	
180 min Summer	16.829	0.0	170.2	184	
240 min Summer	13.848	0.0	186.7	242	
360 min Summer	10.488	0.0	212.4	360	
480 min Summer	8.600	0.0	232.0	418	
600 min Summer	7.368	0.0	248.4	482	
720 min Summer	6.491	0.0	263.0	548	
960 min Summer	5.314	0.0	286.8	684	
1440 min Summer	4.007	0.0	324.6	968	
2160 min Summer	3.019	0.0	366.4	1384	
2880 min Summer	2.466	0.0	399.3	1796	
4320 min Summer	1.853	0.0	450.2	2552	
5760 min Summer	1.511	0.0	489.4	3232	
7200 min Summer	1.290	0.0	522.2	3896	
8640 min Summer	1.133	0.0	550.6	4584	
10080 min Summer	1.016	0.0	575.7	5248	
	75.304	0.0	71.1	22	
	52.677	0.0	99.4	36	
©1	982-20	18 Innc	VVZe		

	Page 2
180191	
Knocknacarra District	
Site 2 Attenuation	Micco
Designed by FNS	Drainage
Checked by NCG	Dialitage
Source Control 2018.1	1
	Knocknacarra District Site 2 Attenuation Designed by FNS Checked by NCG

Summary of Res	ults for 1	<u>00 year</u>	Return	Period	(+10%)
Storm	Max	Max	Max Ma	x Statu	ıs
Event	Level	Depth Co	ontrol Volu	ume	
	(m)	(m)	(1/a) (m)	3)	

			(m)	(m)	(1/s)	(m³)	
60	min	Winter	28.473	0.623	3.4	119.1	ОК
120	min	Winter	28.606	0.756	3.4	144.3	ΟK
180	min	Winter	28.672	0.822	3.4	157.1	ΟK
240	min	Winter	28.711	0.861	3.4	164.5	ΟK
360	min	Winter	28.745	0.895	3.4	171.0	ΟK
480	min	Winter	28.749	0.899	3.4	171.8	ΟK
600	min	Winter	28.739	0.889	3.4	169.9	ΟK
720	min	Winter	28.729	0.879	3.4	167.9	ΟK
960	min	Winter	28.711	0.861	3.4	164.4	ΟK
1440	min	Winter	28.657	0.807	3.4	154.1	ΟK
2160	min	Winter	28.553	0.703	3.4	134.2	ΟK
2880	min	Winter	28.434	0.584	3.4	111.6	ΟK
4320	min	Winter	28.153	0.303	3.4	57.9	ΟK
5760	min	Winter	27.984	0.134	3.4	25.6	ΟK
7200	min	Winter	27.895	0.045	3.2	8.7	ΟK
8640	min	Winter	27.852	0.002	3.0	0.5	ОК
10080	min	Winter	27.850	0.000	2.7	0.0	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	34.650	0.0	130.7	64
120	min	Winter	22.092	0.0	166.9	122
180	min	Winter	16.829	0.0	190.7	180
240	min	Winter	13.848	0.0	209.3	236
360	min	Winter	10.488	0.0	237.7	348
480	min	Winter	8.600	0.0	260.1	456
600	min	Winter	7.368	0.0	278.6	548
720	min	Winter	6.491	0.0	294.4	574
960	min	Winter	5.314	0.0	321.3	732
1440	min	Winter	4.007	0.0	363.3	1042
2160	min	Winter	3.019	0.0	410.7	1496
2880	min	Winter	2.466	0.0	447.1	1956
4320	min	Winter	1.853	0.0	504.4	2640
5760	min	Winter	1.511	0.0	548.4	3288
7200	min	Winter	1.290	0.0	585.0	3888
8640	min	Winter	1.133	0.0	616.9	4416
10080	min	Winter	1.016	0.0	645.1	0

©1982-2018 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House	180191	
Upper Ormond Quay	Knocknacarra District	
Dublin 7	Site 2 Attenuation	Mirro
Date 24/09/2019	Designed by FNS	Drainage
File 180191- Norther	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	1

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	16.000	Shortest Storm (mins)	15
Ratio R	0.261	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change 🖇	+10

<u>Time Area Diagram</u>

Total Area (ha) 0.450

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.225	4	8	0.225

OBFL Consulti	ng Engi	neers							Pa	age 4	
Ormond House			1	L8019	1						
Jpper Ormond (Quay		ľ	Knock	nacarra D	Distr	ict				
Dublin 7			5	Site	2 Attenua	ation			N	licco	
Date 24/09/20	19		Г	Desia	ned by FN	IS				licro	
File 180191- 1				2	ed by NCG					Irain	DG
	NOT CHICT				e Control		0 1				
Innovyze			2	Sourc	e control	_ 201	8.1				
			<u>Mo</u>	del 1	<u>Details</u>						
		Storage :	is Onli	ine Co	over Level	(m) 29	.600				
		<u>Ta</u>	ank oi	<u>r Por</u>	<u>id Structi</u>	<u>ire</u>					
			Invert	Leve	l (m) 27.85	0					
Depth (m) i	Area (m²)	Depth (m) Area	(m²)	Depth (m)	Area	(m²)	Depth (m)	Area	(m²)	
0.000	191.0	0.70	0	191.0	1.400		0.0	2.100		0.0	
0.100	191.0			191.0			0.0	2.200		0.0	
0.200	191.0			191.0			0.0	2.300		0.0	
0.300	191.0			0.0			0.0	2.400		0.0	
0.400	191.0			0.0			0.0	2.500		0.0	
0.500 0.600	191.0 191.0			0.0			0.0				
0.000	191.0	1.50	0	0.0	2.000		0.0				
	<u>H</u>	<u>ydro-Bra</u>	ake® (<u>Optim</u>	uum Outflo	ow Co	<u>ntro</u>	<u>1</u>			
					ence MD-SHE-	-0087-	3400-				
			Design sign Fi					1.019 3.4			
		De	-	lush-F			C	alculated			
					ive Minimi	ise up					
				plicat				Surface			
			Sump A	Availa	ble			Yes			
			Diame	eter (mm)			87			
			nvert l					27.731			
]		utlet Pip						100			
	Suggest	ed Manhol	e Diame	eter (mm)			1200			
Control Poi				(1/s)	Contr	rol Po	ints	Head	(m)	Flow	(1/s
Design Point (Ca F		1.019 0.302		3.4 3.4	Mean Flow	over 1			.637 -		2. 3.
The hydrologic								-			
Hydro-Brake® O Hydro-Brake Op invalidated	-	-									a
Depth (m) Flo	ow (l/s)	Depth (m)	Flow	(1/s)	Depth (m)	Flow	(l/s)	Depth (m)	Flo	w (1/:	s)
0.100	2.7	1.200		3.7			5.6	7.000			.4
0.200	3.3	1.400		3.9			6.0				.6
0.300	3.4	1.600		4.2			6.4				.9
0.400	3.4	1.800		4.4			6.8				.2
0.500	3.2	2.000		4.6			7.1				.4
0.600	2.9	2.200		4.9			7.5	9.500)	9	.7
0.800	3.0	2.400		5.1			7.8				
1.000	3.4	2.600		5.2	6.500		8.1				

Appendix D

SURFACE WATER SEWER CALCULATIONS

DBFL Consulting	Engine	ers						Pa	ige 1
Ormond House			18	0191					
Upper Ormond Qua	аy		Kn	ocknacarr	a Dis	strict			
Dublin 7			SW	Network	Site	1		N	licro
Date 24/09/2019			De	signed by	FNS				
File 180191- Dra	inage.	mdx	Ch	ecked by	NCG				rainago
Innovyze			Ne	twork 201	8.1				
STO	RM SEWE	ER DESI	GN by	the Modif	ied H	Rational	Meth	<u>od</u>	
		Des	ign Cr	<u>iteria fo</u>	r SW	2			
	Pi	pe Sizes	STANDA	RD Manhole	Sizes	STANDARD			
	F	SR Rainf	all Mode	el - Scotlar	id and	Ireland			
Re	turn Per	riod (yea		2				PIMP (-,
			(mm) 16. io R 0.	.000		'low / Clı nimum Back			
Maxin	um Raint	fall (mm	/hr)	100	Max	kimum Back	drop He	eight (m) 1.500
Maximum Time of (
		age (l/s unoff Coe				or Auto De De for Opt	2		
				with Level S	-	-			,
			-	Diagram f					
						<u></u>			
			Time A mins) (rea Time ha) (mins)					
			0-4 0.	560 4-8	0.360				
		Total A	Area Con	tributing (ha) =	0.920			
		Tota	l Pipe V	Volume (m³)	= 38.0)73			
		<u>Netwo</u> :	rk Des	ign Table	for	SW_2			
PN Length Fal	-			Base	k		Secti	on Type	
(m) (m) (1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT (mm)		Design
1.000 40.561 0.5					0.600		5 Pipe/		-
1.001 15.038 0.1	50 100.3	3 0.000	0.00	0.0	0.600	o 22	5 Pipe/	Conduit	t 🤒
2.000 37.759 0.6	60 57.2	2 0.079	4.00	0.0	0.600	o 22	5 Pipe/	Condui	t 🤒
1.002 25.627 0.3	05 84.0	0.086	0.00	0.0	0.600	o 22	5 Pipe/	Condui	t 🤒
		Ne	<u>etwork</u>	Results '	Table				
PN Rain (mm/hr)		US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)		Cap (1/s)	Flow (l/s)
1.000 48.74	4 46	27.700	0.159	0.0	0.0	2.1	1.47	58.4	23.1
1.001 48.03		27.190	0.159		0.0			51.9	23.1
	4 9 5	07 700	0 055	<u> </u>	~ ~		1 50	<u> </u>	11 0
2.000 49.10	4.36	27.700	0.079	0.0	0.0	1.1	1.73	68.9	11.6
1.002 46.99	4.95	27.040	0.324	0.0	0.0	4.1	1.43	56.8	45.4
		(©1982-:	2018 Inno ⁻	vvze				

BFL Cc	onsult	ing E	ngine	ers							Pa	lge 2
rmond	House				18	0191						
pper C	Drmond	Quay			Kn	locknacarr	a Dis	trict				
ublin	7				SW	Network	Site	1			N	licro
ate 24	1/09/2	019			De	signed by	FNS					
ile 18	30191-	Drai	nage.	mdx	Ch	ecked by	NCG					rainac
nnovyz	ze				Ne	twork 201	8.1					
				Networ	ck Des	<u>ign Table</u>	for	<u>sw_2</u>				
PN	-	Fall	-	I.Area	T.E.	Base	k	HYD	DIA	Secti	on Type	e Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT ((mm)			Design
3.000	19.428	0.243	80.0	0.098	4.00	0.0	0.600	0	150	Pipe/	Conduit	: 🔒
3.001	16.681	0.209	79.8	0.000	0.00	0.0	0.600	0	150	Pipe/	Conduit	: 🔒
4.000	6.596	0.170	38.8	0.074	4.00	0.0	0.600	0	150	Pipe/	Conduit	: 🔒
4.001	17.497	0.283	61.8	0.000	0.00	0.0	0.600			-	Conduit	
1.003	27.636	0.230	120.2	0.000	0.00	0.0	0.600	0	300	Pipe/	Conduit	: 🔒
5.000	18.307	0.330	55.5	0.146	4.00	0.0	0.600	0	150	Pipe/	Conduit	: 🔒
5.001	54.284	0.536	101.3	0.017	0.00	0.0	0.600	0	225	Pipe/	Conduit	
1.004	6.631	0.050	132.6	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	:
1.005	17.745	0.100	177.5	0.261	0.00	0.0	0.600	0			Conduit	_
				Ne	etwork	Results '	<u> Table</u>					
PI	N Ra:	in 7	r.c. 1	US/IL Σ	I.Area	Σ Base	Foul	Add F	Low	Vel	Сар	Flow
	(mm/	'hr) (n	nins)	(m)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
3.0	00 49	9.39	4.29 2	7.850	0.098	0.0	0.0	1	1.3	1.13	19.9	14.4
3.0	01 48	8.46	4.53 2	7.607	0.098	0.0	0.0	1	1.3	1.13	19.9	14.4
4.0	00 50	.26	4.07 2	7.370	0.074	0.0	0.0	1	L.0	1.62	28.6	11.1
4.0	01 49	.36	4.30 2	7.200	0.074	0.0	0.0	1	L.O	1.28	22.6	11.1

1.003 45.92 5.27 26.660 0.496 0.0 0.0 6.2 1.43 101.3 67.9

5.00049.644.2327.6500.1460.00.02.01.3523.921.65.00147.094.9227.2450.1630.00.02.11.3051.722.9

1.00445.705.3425.8000.6591.00545.025.5625.7500.920

0.00.08.21.57173.689.70.00.011.21.36149.9123.4

©1982-2018 Innovyze

	lting E	Sngın	eers	I .						Pá	age 1
ormond Hous	se			-	0191						
Jpper Ormon	nd Quay	/		Kn	locknacarr	a Dis	stric	t			
Dublin 7				SW	Network	Site	2			N	licro
Date 24/09,	/2019			De	signed by	FNS					raina
Tile 180191	l- Drai	inage	.mdx	Ch	ecked by	NCG					Di IID I
Innovyze				Ne	twork 201	8.1					
Maximum Tir	Ret Maximu ne of Co Fo	P. I urn Pe m Rain ncentr ul Sew	Des ipe Sizes FSR Rainf eriod (yea M5-60 Rat. fall (mm, ration (m. ration (m.	ign Cr STANDA all Mode ars) (mm) 16. io R 0. /hr) ins) /ha) 0. eff. 0. signed v	30 Min Des .000 Min .750 M: with Level S Diagram f .rea Time	or SW Sizes ad and Add H Mir Max sign De Vel fo in Slop Soffits Soffits Eor SW Area	_1 STAND/ Irela: Flow / himum cimum cimum cimum cor Aut por Aut por Aut	ARD Clim Backd Backd or Op o Des	ate Ch rop He rop He timisa ign or	PIMP (hange (eight (eight ((%) 1 (m) 0.20 (m) 1.50 (m) 1.20 (s) 1.0
			Total 2	0-4 0. Area Con	.147 4-8	0.300	0.447				
PN Leng	th Fall	Slop	Total <u>Netwo:</u>	Area Con L Pipe V rk Des	' utributing (Yolume (m³) iqn Table	0.300 ha) = = 140. for	815 <u>SW_1</u>	DIA	Secti	.on Typ	e Auto
PN Leng (m)		Slop (1:X	Total <u>Netwo:</u> e I.Area	Area Con L Pipe V rk Des T.E.	' atributing (Yolume (m³)	0.300 ha) = = 140.	815		Secti	.on Typ	e Auto Design
-	(m)	(1:X	Total <u>Netwo:</u> e I.Area) (ha)	Area Con L Pipe V rk Des T.E.	dtributing (Volume (m ³) ign Table Base Flow (l/s)	0.300 ha) = = 140. <u>for</u> k	815 <u>SW_1</u> hyd	(mm)		.on Typ	Design
(m) 1.000 45.9	(m)	(1:X	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077	Area Con L Pipe V <u>rk Des</u> T.E. (mins)	ritributing (Volume (m ³) ign Table Base Flow (l/s) 0.0	0.300 ha) = = 140. <u>for</u> k (mm)	815 SW_1 HYD SECT	(mm) 225	Pipe/		Design
(m) 1.000 45.9 1.001 6.1 1.002 8.4	(m) 76 0.312 20 0.034 53 0.04	(1:x 1 147. 4 180. 7 179.	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062	Area Con L Pipe V <u>rk Des</u> T.E. (mins) 4.00 0.00 0.00	ritributing (Volume (m ³) ign Table Base Flow (l/s) 0.0 0.0 0.0	0.300 ha) = = 140. for k (mm) 0.600 0.600 0.600	815 <u>SW_1</u> HYD SECT 0 0 0	(mm) 225 225 225	Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	Design t 🔒 t 🔒 t
(m) 1.000 45.9 1.001 6.1 1.002 8.4	(m) 76 0.312 20 0.034	(1:x 1 147. 4 180. 7 179.	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062	Area Con L Pipe V <u>rk Des</u> T.E. (mins) 4.00 0.00	ritributing (Volume (m ³) ign Table Base Flow (l/s) 0.0 0.0 0.0	0.300 ha) = = 140. for k (mm) 0.600 0.600	815 <u>SW_1</u> HYD SECT 0 0	(mm) 225 225 225	Pipe/ Pipe/ Pipe/	'Condui 'Condui	Design t 🔒 t 🔒 t 🔒
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8	(m) 76 0.312 20 0.034 53 0.04	(1:X 1 147. 4 180. 7 179. 3 300.	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000	Area Con L Pipe V <u>rk Des</u> T.E. (mins) 4.00 0.00 0.00	' utributing ('olume (m³) iqn Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.300 ha) = = 140. for k (mm) 0.600 0.600 0.600	815 <u>SW_1</u> HYD SECT 0 0 0	(mm) 225 225 225 300	Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	Design t 🔒 t 🔒 t 🔒
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8	(m) 76 0.312 20 0.034 53 0.04 07 0.023	(1:X 1 147. 4 180. 7 179. 3 300.	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075	Area Con L Pipe V rk Des T.E. (mins) 4.00 0.00 0.00 0.00 4.00	<pre> tributing (</pre>	0.300 ha) = = 140. for k (mm) 0.600 0.600 0.600 0.600 0.600	815 <u>SW 1</u> HYD SECT 0 0 0 0 0	(mm) 225 225 225 300	Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui 'Condui	Design t 🔒 t 🔒 t 🔒
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8	(m) 76 0.312 20 0.034 53 0.04 07 0.023	(1:X 1 147. 4 180. 7 179. 3 300.	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075	Area Con L Pipe V rk Des T.E. (mins) 4.00 0.00 0.00 0.00 4.00	' utributing ('olume (m³) iqn Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.300 ha) = = 140. for k (mm) 0.600 0.600 0.600 0.600 0.600	815 <u>SW 1</u> HYD SECT 0 0 0 0 0	(mm) 225 225 225 300	Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui 'Condui	Design t 🔒 t 🔒 t 🔒
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8 3.000 9.4	(m) 76 0.312 20 0.034 53 0.04 07 0.023 42 0.063 Rain	(1:X 1 147. 4 180. 7 179. 3 300.	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075	Area Con L Pipe V <u>rk Des</u> T.E. (mins) 4.00 0.00 0.00 4.00 4.00	' attributing ('olume (m ³) ign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.300 ha) = = 140. for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 Table Foul	815 <u>SW 1</u> HYD SECT 0 0 0 0 0	(mm) 225 225 300 225 225	Pipe/ Pipe/ Pipe/ Pipe/	(Condui (Condui (Condui (Condui (Condui	Design
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8 3.000 9.4	(m) 76 0.312 20 0.034 53 0.04 07 0.023 42 0.063 Rain	(1:x 1 147. 4 180. 7 179. 3 300. 3 150. T.C. mins)	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075 <u>Network</u> US/IL Σ	Area Con L Pipe V <u>rk Des</u> T.E. (mins) 4.00 0.00 0.00 4.00 etwork : I.Area	rolume (m ³) iqn Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.300 ha) = = 140. for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 Table Foul	815 <u>SW_1</u> <u>HYD</u> <u>SECT</u> 0 0 0 0 0 0 1 (1/	(mm) 225 225 300 225 225	Pipe/ Pipe/ Pipe/ Pipe/ Vel	(Condui (Condui (Condui (Condui (Condui	Design
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8 3.000 9.4 PN (r	(m) 76 0.312 20 0.034 53 0.04 07 0.023 42 0.063 Rain mm/hr) ((1:x 1 147. 4 180. 7 179. 3 300. 3 150. T.C. mins) 4.71	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075 <u>Na</u> (m)	Area Con L Pipe V rk Des T.E. (mins) 4.00 0.00 0.00 4.00 4.00 c.00 4.00 c.00 4.00 c.00	rolume (m ³) iqn Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.300 ha) = = 140. for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Table Foul (1/s) 0.0	815 <u>SW_1</u> HYD SECT 0 0 0 0 0 0 0 1 (1/	(mm) 225 225 300 225 225	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	(Condui (Condui (Condui (Condui (Condui (Condui (1/s) 42.7	Design
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8 3.000 9.4 PN (r 1.000 1.001 1.001 1.002	(m) 76 0.312 20 0.034 53 0.04 07 0.023 42 0.063 Rain mm/hr) (47.81 47.81 47.44 46.94	(1:x 1 147. 4 180. 7 179. 3 300. 3 150. T.C. mins) 4.71 4.82 4.96	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075 <u>Na</u> US/IL Σ (m) 28.300 27.989 27.955	Area Con L Pipe V rk Des T.E. (mins) 4.00 0.00 0.00 4.00 etwork : I.Area (ha) 0.077 0.112 0.174	r attributing (volume (m ³) ign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.300 ha) = = 140. for k (mm) 0.600 0.0000 0.0000 0.0000 0.000000	815 <u>SW_1</u> <u>HYD</u> <u>SECT</u> 0 0 0 0 0 Add 1 (1/	(mm) 225 225 300 225 Flow s) 1.0 1.4 2.2	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.07 0.97	(Condui (Condui (Condui (Condui (Condui (Condui 42.7 38.6 38.6	Design t t t t t t t t t t t t t t t t t t t
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8 3.000 9.4 PN (r 1.000 1.001	(m) 76 0.312 20 0.034 53 0.04 07 0.023 42 0.063 Rain mm/hr) (47.81 47.81 47.44	(1:x 1 147. 4 180. 7 179. 3 300. 3 150. T.C. mins) 4.71 4.82 4.96	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075 <u>N</u> (m) 28.300 27.989	Area Con L Pipe V rk Des T.E. (mins) 4.00 0.00 0.00 4.00 etwork : I.Area (ha) 0.077 0.112	r attributing (volume (m ³) ign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.300 ha) = = 140. for k (mm) 0.6000 0.6000 0.6000 0.600000000	815 <u>SW_1</u> <u>HYD</u> <u>SECT</u> 0 0 0 0 0 Add 1 (1/	(mm) 225 225 300 225 Flow s) 1.0 1.4	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.07 0.97	(Condui (Condui (Condui (Condui (Condui (Condui 42.7 38.6	Design t t t t t f t f t t f t t f t t f t t f t f t f t f t f t f t f t f t f t f t f f t f
(m) 1.000 45.9 1.001 6.1 1.002 8.4 1.003 6.8 3.000 9.4 PN (r 1.000 1.001 1.001 1.002	(m) 76 0.312 20 0.034 53 0.04 07 0.023 42 0.063 Rain mm/hr) (47.81 47.81 47.44 46.94	(1:x 1 147. 4 180. 7 179. 3 300. 3 150. T.C. mins) 4.71 4.82 4.96 5.09	Total <u>Netwo:</u> e I.Area) (ha) 8 0.077 0 0.035 9 0.062 0 0.000 0 0.075 <u>Na</u> US/IL Σ (m) 28.300 27.989 27.955	Area Con L Pipe V rk Des T.E. (mins) 4.00 0.00 0.00 4.00 etwork : I.Area (ha) 0.077 0.112 0.174	ritributing (volume (m ³) ign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.300 ha) = = 140. for k (mm) 0.600 0.0000 0.0000 0.000000	815 <u>SW_1</u> <u>HYD</u> <u>SECT</u> 0 0 0 0 Add 1 (1/	(mm) 225 225 300 225 Flow s) 1.0 1.4 2.2	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.07 0.97 0.90	(Condui (Condui (Condui (Condui (Condui (Condui 42.7 38.6 38.6	Design t t t t t t t t t t t t t t t t t t t

DBFL Consulting Engineers		Page 2
Ormond House	180191	
Upper Ormond Quay	Knocknacarra District	
Dublin 7	SW Network Site 2	Micro
Date 24/09/2019	Designed by FNS	Drainage
File 180191- Drainage.mdx	Checked by NCG	Diamage
Innovyze	Network 2018.1	

<u>Network Design Table for SW_1</u>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.001	9.045	0.060	150.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	A
3.002	7.652	0.048	160.0	0.073	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
3.003	17.318	0.108	160.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ě
3.004	22.094	0.136	162.5	0.071	0.00	0.0	0.600	0	225	Pipe/Conduit	ě
1.004	15.400	0.051	300.0	0.046	0.00	0.0	0.600	0	300	Pipe/Conduit	•
1.005	8.270	0.028	300.0	0.008	0.00	0.0	0.600	0	300	Pipe/Conduit	ē
4.000	34.859	0.205	170.0	0.000	4.00	0.0	0.600	0	375	Pipe/Conduit	۵
1.008	68.404	0.150	456.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	•
1.009	16.503	0.033	500.1	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ē

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
3.001 3.002	49.39 48.92		28.237	0.075	0.0	0.0	1.0	1.07	42.4 41.0	11.2 21.6
3.002	48.92		28.129	0.148	0.0	0.0	2.0	1.03	41.0	21.6
3.004	46.65	5.05	28.021	0.219	0.0	0.0	2.8	1.02	40.7	30.4
1.004	45.60	5.37	27.810	0.439	0.0	0.0	5.4	0.90	63.8	59.6
1.005	45.13	5.53	27.759	0.447	0.0	0.0	5.5	0.90	63.8	60.1
4.000	48.89	4.42	27.630	0.000	0.0	0.0	0.0	1.39	153.1	0.0
1.008 1.009	41.50 40.88		27.275	0.447 0.447	0.0	0.0	5.5		225.6	60.1 60.1
1.009	10.00	/.10	27.030	0.44/	0.0	0.0	5.5	1.00	500.0	00.1

Appendix E

FOUL WATER SEWER CALCULATIONS

DBFL Consulting Engineers		Page 1
Ormond House	180191	
Upper Ormond Quay	Knocknacarra District	
Dublin 7	FW Network Site 1	Micro
Date 24/09/2019	Designed by FNS	
File 180191- Drainage.mdx	Checked by NCG	Diamage
Innovyze	Network 2018.1	

FOUL SEWERAGE DESIGN

Design Criteria for FS 2

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m) 0.	200
Calculation Method	BS 8301	Maximum Backdrop Height (m) 1.	500
Frequency Factor	0.00	Min Design Depth for Optimisation (m) 1.	200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s) 0	.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for FS_2

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	41.178 15.129			0.000 0.000	1344.0 0.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	₽
2.000	41.859	0.920	45.5	0.000	560.0	0.0	1.500	0	150	Pipe/Conduit	۵
1.002	22.203	0.247	90.0	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	۵
3.000 3.001	6.135 19.274	0.110 0.290		0.000	280.0 0.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	₽
	19.284 13.354			0.000	280.0 0.0		1.500 1.500	0 0		Pipe/Conduit Pipe/Conduit	⊕ ⊕

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)		Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.000	27.500	0.000	0.0	1344.0	0.0	69	1.16	1.20	21.2	9.2	
1.001	26.730	0.000	0.0	1344.0	0.0	72	1.11	1.13	19.9	9.2	
2.000	27.400	0.000	0.0	560.0	0.0	54	1.11	1.30	23.0	6.4	
1.002	26.405	0.000	0.0	1904.0	0.0	73	0.98	1.21	48.1	11.0	
3.000	27.300	0.000	0.0	280.0	0.0	44	0.93	1.54	61.2	5.1	
3.001	27.190	0.000	0.0	280.0	0.0	46	0.88	1.41	56.0	5.1	
4.000	27.700	0.000	0.0	280.0	0.0	43	0.97	1.63	64.7	5.1	
4.001	27.314	0.000	0.0	280.0	0.0	45	0.90	1.45	57.8	5.1	

©1982-2018 Innovyze

DBFL Consulting Engineers		Page 2
Ormond House	180191	
Upper Ormond Quay	Knocknacarra District	
Dublin 7	FW Network Site 1	Mirro
Date 24/09/2019	Designed by FNS	Drainage
File 180191- Drainage.mdx	Checked by NCG	Diamage
Innovyze	Network 2018.1	1

<u>Network Design Table for FS_2</u>

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.003	28.263	0.236	120.0	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	0
	15.438 55.080			0.000	560.0 0.0		1.500 1.500			Pipe/Conduit Pipe/Conduit	0 0
	25.347 10.359				0.0 42.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	0 0

<u>Network Results Table</u>

PN	US/IL (m)		Σ Base Flow (l/s)		Add Flow (l/s)	-	P.Vel (m/s)		-	Flow (1/s)	
1.003	26.158	0.000	0.0	2464.0	0.0	85	0.92	1.05	41.6	12.8	
	27.460 27.040		0.0	560.0 560.0	0.0		1.15 1.04			6.4 6.4	
	25.922 25.721	0.000	0.0	3024.0 3066.0	0.0	93 94	0.94 0.93	1.02 1.01	40.6 40.3		

DBFL Consulting Engineers		Page 1
Ormond House	180191	
Upper Ormond Quay	Knocknacarra District	
Dublin 7	FW Network Site 2	Micro
Date 24/09/2019	Designed by FNS	
File 180191- Drainage.mdx	Checked by NCG	Diginada
Innovyze	Network 2018.1	

FOUL SEWERAGE DESIGN

Design Criteria for FS 1

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	10
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m) (0.200
Calculation Method	BS 8301	Maximum Backdrop Height (m) 1	1.500
Frequency Factor	0.00	Min Design Depth for Optimisation (m) 1	1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for FS_1

	PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1	.000	11.612	0.204	56.9	0.000	1008.0	0.0	1.500	0	150	Pipe/Conduit	0
1	.001	10.089	0.146	69.1	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ē
1	.002	6.562	0.094	69.8	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ē
1	.003	17.777	0.242	73.5	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ē
1	.004	25.389	0.314	80.9	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ē
2	2.003	12.473	0.119	104.8	0.000	616.0	0.0	1.500	0	150	Pipe/Conduit	•
2	2.004	15.391	0.144	106.9	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	ê
1	.005	12.244	0.102	120.0	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	•
1	.006	20.243	0.167	121.2	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	ē
3	3.000	30.316	0.454	66.8	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	0

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.000	28.100	0.000	0.0	1008.0	0.8	69	1.12	1.16	20.5	8.9	
1.001	27.896	0.000	0.0	1008.0	0.8	73	1.04	1.05	18.6	8.9	
1.002	27.750	0.000	0.0	1008.0	0.8	73	1.04	1.05	18.5	8.9	
1.003	27.656	0.000	0.0	1008.0	0.8	74	1.02	1.02	18.1	8.9	
1.004	27.414	0.000	0.0	1008.0	0.8	76	0.98	0.97	17.2	8.9	
2.003	27.363	0.000	0.0	616.0	0.7	73	0.85	0.86	15.1	7.3	
2.004	27.244	0.000	0.0	616.0	0.7	74	0.84	0.85	15.0	7.3	
1.005	27.025	0.000	0.0	1624.0	1.0	79	0.89	1.05	41.6	11.1	
1.006	26.923	0.000	0.0	1624.0	1.0	80	0.88	1.04	41.4	11.1	
3.000	27.210	0.000	0.0	0.0	0.0	0	0.00	1.41	55.9	0.0	
			©19	82-2018	3 Innovy	ze					

			Page 2
180191			
Knocknacarra	District		
FW Network Si	te 2		Micro
Designed by F	INS		
Checked by NC	CG		Drainage
Network 2018.	1		1
Flow (l/s) (m	m) SECT (mm))	Design
work Results Ta	ble		
	-	-	-
1624.0 1.0	75 0.97	1.18 46	
	Knocknacarra FW Network Si Designed by F Checked by NC Network 2018. Design Table f hits Base k Flow (1/s) (m 0.0 0.0 1.5 work Results Ta E Units Add Flow (1/s)	Knocknacarra District FW Network Site 2 Designed by FNS Checked by NCG Network 2018.1 Design Table for FS_1 nits Base k HYD DIA Flow (1/s) (mm) SECT (mm) 0.0 0.0 1.500 o 223 Work Results Table E Units Add Flow P.Dep P.Vel (1/s) (mm) (m/s)	Knocknacarra District FW Network Site 2 Designed by FNS Checked by NCG Network 2018.1 Design Table for FS_1 hits Base k HYD DIA Section Flow (1/s) (mm) SECT (mm) 0.0 0.0 1.500 o 225 Pipe/Con Work Results Table E Units Add Flow P.Dep P.Vel Vel Cap

Appendix F

IRISH WATER STATEMENT OF DESIGN ACCEPTANCE

DBFL c/o John Moloney Ormond House Upper Ormond Quay Dublin 7

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water

PO Box 448, South City Delivery Office, Cork City.

7 October 2019

Re: Design Submission for Knocknacarra District Centre, Rahoon (the "Development") (the "Design Submission") / Connection Reference No: 0114292540

Dear John Moloney,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: James O'Malley Phone: 094 90 43310 Email: jomalley@water.ie

Yours sincerely,

M Bruge

Maria O'Dwyer

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Brendan Murphy, Michael G. O'Sullivan Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

REVOOS

Connections and Developer Services

Appendix A

Document Title & Revision

- [Watermain Layout] 180191-3005-A
- [Longitudinal Sections Through Foul Sewer Sheet 1] 180191-3021
- [Longitudinal Sections Through Foul Sewer Sheet 2] 180191-3022
- [Longitudinal Sections Through Foul Sewer Sheet 3] 180191-3023
- [Site Services Layout] 180191-3000-A

For further information, visit <u>www.water.ie/connections</u>

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Appendix G

IRISH WATER PRE CONNECTION FEEDBACK FORM

DBFL c/o John Moloney Ormond House Upper Ormond Quay Dublin 7

Uisce Éireann Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

14th August 2019

Dear Sir/Madam,

Re: Customer Reference No 1000850255 pre-connection enquiry - Subject to contract | Contract denied Connection for 340 Housing Units & 3,200 sqm of Retail Space

Irish Water has reviewed your pre-connection enquiry in relation to water and wastewater connections at Knocknacarra, Galway. Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

A wastewater connection can be facilitated to the Irish Water 300mm diameter wastewater network which runs to the south west of the proposed development site. Please see the enclosed indicative Irish Water GIS map which indicates the location of the Irish Water networks. It is noted that the proposed retail type discharge may require a Trade Effluent to Sewer Discharge Licence to be in place prior to connection being made. The applicant is advised to visit https://www.water.ie/for-business/trade-effluent/ in this regard.

A watermain connection can be facilitated to the Irish Water 150mm diameter watermain network. The confirmation of feasibility to connect to the Irish Water infrastructure does not extend to your fire flow requirements. To guarantee a flow to meet the Fire Authority requirements you should provide adequate fire storage capacity within your development.

Strategic Housing Development

Irish Water notes that the scale of this development may dictate that it is subject to the Strategic Housing Development planning process. Therefore in advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services. A design proposal for the water and/or wastewater infrastructure can be submitted to cdsdesignqa@water.ie for assessment.

This feasibility feedback relates to the capacity of the Irish Water network to cater for the proposed development's demand/loadings. Irish Water networks traverse the proposed development site as indicated in the enclosed Irish Water GIS Map. Should you require to divert Irish Water assets you will require to liaise with the Irish Water diversions team. Proposals can be submitted to diversions@water.ie. to allow feasibility feedback to be provided. Further information in this regard is available at https://www.water.ie/connections/developer-services/diversions/.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact James O Malley from the design team at jomalley@water.ie. For further information, visit **www.water.ie/connections**

Yours sincerely,

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Mike Quinn (Chairman), Eamon Gallen, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghnfomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Ulimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363